Reduction Formulae

117 questions · 22 question types identified

Sort by: Question count | Difficulty
Trigonometric power reduction

A question is this type if and only if the integral I_n involves powers of sin(x), cos(x), tan(x), sec(x), cosec(x), or cot(x) and requires deriving or using a reduction formula specific to trigonometric functions.

17 Challenging +1.4
14.5% of questions
Show example »
8 Given that \(I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } x \mathrm {~d} x \quad n \geq 0\) show that \(n I _ { n } = ( n - 1 ) I _ { n - 2 } \quad n \geq 2\) [0pt] [5 marks]
View full question →
Easiest question Challenging +1.2 »
8. $$I _ { n } = \int \cos ^ { n } x \mathrm {~d} x \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { 1 } { n } \cos ^ { n - 1 } x \sin x + \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Show that for positive even integers \(n\) $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { n } x d x = \frac { ( n - 1 ) ( n - 3 ) \ldots 5 \times 3 \times 1 } { n ( n - 2 ) ( n - 4 ) \ldots 6 \times 4 \times 2 } \times \overline { 2 }$$
  3. Hence determine the exact value of $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { 6 } x \sin ^ { 2 } x d x$$
    GUV SIHI NI JIVM ION OCVJYV SIHI NI JIIIM ION OCVJ4V SIHIANI JIIIM ION OO
View full question →
Hardest question Challenging +1.8 »
  1. Given that
$$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { n } \theta \mathrm {~d} \theta , \quad n \geqslant 0$$
  1. prove that, for \(n \geqslant 2\), $$n I _ { n } = \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { n } + ( n - 1 ) I _ { n - 2 }$$
  2. Hence find the exact value of \(I _ { 5 }\), showing each step of your working.
View full question →
Algebraic function with square root

A question is this type if and only if I_n involves x^n multiplied or divided by a square root of a polynomial (e.g., √(a²-x²), √(x²+a²), √(ax-x²)).

11 Challenging +1.5
9.4% of questions
Show example »
4 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } ( 1 + 2 x ) } \mathrm { d } x$$ Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 3 - n I _ { n - 1 }$$ Show that $$I _ { 3 } = \frac { 2 } { 35 } ( \sqrt { } 3 + 1 )$$
View full question →
Easiest question Challenging +1.2 »
5. Given that $$I _ { n } = \int x ^ { n } \sqrt { ( x + 8 ) } \mathrm { d } x , \quad n \geqslant 0 , x \geqslant 0$$
  1. show that, for \(n \geqslant 1\) $$I _ { n } = \frac { p x ^ { n } ( x + 8 ) ^ { \frac { 3 } { 2 } } } { 2 n + 3 } - \frac { q n } { 2 n + 3 } I _ { n - 1 }$$ where \(p\) and \(q\) are constants to be found.
  2. Use part (a) to find the exact value of $$\int _ { 0 } ^ { 10 } x ^ { 2 } \sqrt { ( x + 8 ) } d x$$ giving your answer in the form \(k \sqrt { 2 }\), where \(k\) is rational.
View full question →
Hardest question Challenging +1.8 »
8. $$I _ { n } = \int \frac { x ^ { n } } { \sqrt { \left( x ^ { 2 } + k ^ { 2 } \right) } } \mathrm { d } x \quad \text { where } k \text { is a constant and } n \in \mathbb { Z } ^ { + }$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { x ^ { n - 1 } } { n } \left( x ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } } - \frac { ( n - 1 ) } { n } k ^ { 2 } I _ { n - 2 }$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \sqrt { \left( x ^ { 2 } + 1 \right) } } \mathrm { d } x$$
View full question →
Polynomial times trigonometric

A question is this type if and only if I_n involves x^n or a polynomial multiplied by sin(x), cos(x), sin(kx), cos(kx), or similar trigonometric functions (not powers of trig functions).

9 Challenging +1.3
7.7% of questions
Show example »
6 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \pi } x ^ { n } \sin x \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 2 , I _ { n } = \pi ^ { n } - n ( n - 1 ) I _ { n - 2 }\).
  2. Find \(I _ { 5 }\) in terms of \(\pi\).
View full question →
Easiest question Challenging +1.2 »
4. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } x ^ { n } \sin 2 x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { 4 } n \left( \frac { \pi } { 4 } \right) ^ { n - 1 } - \frac { 1 } { 4 } n ( n - 1 ) I _ { n - 2 }$$
  2. Find the exact value of \(I _ { 2 }\)
  3. Show that \(I _ { 4 } = \frac { 1 } { 64 } \left( \pi ^ { 3 } - 24 \pi + 48 \right)\)
View full question →
Hardest question Challenging +1.8 »
6. $$I _ { n } = \int _ { 0 } ^ { \sqrt { \frac { \pi } { 2 } } } x ^ { n } \cos \left( x ^ { 2 } \right) \mathrm { d } x \quad n \geqslant 1$$
  1. Prove that, for \(n \geqslant 5\) $$I _ { n } = \frac { 1 } { 2 } \left( \frac { \pi } { 2 } \right) ^ { \frac { n - 1 } { 2 } } - \frac { 1 } { 4 } ( n - 1 ) ( n - 3 ) I _ { n - 4 }$$
  2. Hence, determine the exact value of \(I _ { 5 }\), giving your answer in its simplest form.
View full question →
Compound expressions with binomial expansion

A question is this type if and only if the integrand involves (a+bx)^n or similar binomial expressions that may require expansion or special reduction techniques.

9 Challenging +1.4
7.7% of questions
Show example »
6
  1. Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \sqrt { } ( 1 - x ) \mathrm { d } x\), prove that, for \(n \geqslant 1\), $$( 2 n + 3 ) I _ { n } = 2 n I _ { n - 1 } .$$
  2. Hence find the exact value of \(I _ { 2 }\).
View full question →
Easiest question Challenging +1.2 »
4. $$I _ { n } = \int _ { 0 } ^ { \sqrt { 3 } } \left( 3 - x ^ { 2 } \right) ^ { n } \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 1\) $$I _ { n } = \frac { 6 n } { 2 n + 1 } I _ { n - 1 }$$
  2. Hence find the exact value of \(I _ { 4 }\), giving your answer in the form \(k \sqrt { 3 }\) where \(k\) is a rational number to be found.
View full question →
Hardest question Challenging +1.8 »
8. $$I _ { n } = \int _ { 0 } ^ { k } x ^ { n } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \quad n \geqslant 0$$ where \(k\) is a positive constant.
  1. Show that $$I _ { n } = \frac { 2 k n } { 3 + 2 n } I _ { n - 1 } \quad n \geqslant 1$$ Given that $$\int _ { 0 } ^ { k } x ^ { 2 } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 9 \sqrt { 3 } } { 280 }$$
  2. use the result in part (a) to determine the exact value of \(k\).
View full question →
Method of differences

A question is this type if and only if it derives a formula of the form I_n - I_(n-k) = f(n) and uses it to find sums or specific values.

9 Challenging +1.6
7.7% of questions
Show example »
5 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$
  1. By considering \(I _ { n } + I _ { n - 2 }\), or otherwise, show that, for \(n \geqslant 2\), $$( n - 1 ) \left( I _ { n } + I _ { n - 2 } \right) = 1 .$$
  2. Find \(I _ { 4 }\) in terms of \(\pi\).
View full question →
Easiest question Standard +0.8 »
5 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Use the fact that \(\tan ^ { 2 } x = \sec ^ { 2 } x - 1\) to show that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { n - 1 } - I _ { n - 2 }$$ Show that \(I _ { 8 } = \frac { 1 } { 7 } - \frac { 1 } { 5 } + \frac { 1 } { 3 } - 1 + \frac { 1 } { 4 } \pi\).
View full question →
Hardest question Challenging +1.8 »
8. $$I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 1\)
  2. Hence show that $$\int _ { 0 } ^ { \ln 2 } \tanh ^ { 4 } x \mathrm {~d} x = p + \ln 2$$ where \(p\) is a rational number to be found.
    8. \(\quad I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0\)
  3. Show that, for \(n \geqslant 1\) $$I _ { n } = I _ { n - 1 } - \frac { 1 } { 2 n - 1 } \left( \frac { 3 } { 5 } \right) ^ { 2 n - 1 }$$
View full question →
Prove formula by induction

A question is this type if and only if it asks to prove a formula for I_n using mathematical induction after establishing a reduction formula.

8 Challenging +1.4
6.8% of questions
Show example »
7 Let $$I _ { n } = \int _ { 0 } ^ { 1 } t ^ { n } \mathrm { e } ^ { - t } \mathrm {~d} t$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = n I _ { n - 1 } - \mathrm { e } ^ { - 1 }$$ Hence prove by induction that, for all positive integers \(n\), $$I _ { n } < n ! .$$
View full question →
Rational function powers

A question is this type if and only if I_n involves (1+x²)^(-n), (a+x²)^(-n), or similar rational function powers.

8 Challenging +1.7
6.8% of questions
Show example »
9. $$I _ { n } = \int \left( x ^ { 2 } + 1 \right) ^ { - n } \mathrm {~d} x , \quad n > 0$$
  1. Show that, for \(n > 0\) $$I _ { n + 1 } = \frac { x \left( x ^ { 2 } + 1 \right) ^ { - n } } { 2 n } + \frac { 2 n - 1 } { 2 n } I _ { n }$$
  2. Find \(I _ { 2 }\)
View full question →
Derive reduction formula by integration by parts

A question is this type if and only if it asks to derive a reduction formula using integration by parts, typically for integrals involving products like x^n·f(x) or trigonometric powers.

7 Challenging +1.3
6.0% of questions
Show example »
5 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \sin x \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n + 2 } = 1 - ( n + 1 ) ( n + 2 ) I _ { n }$$ Hence find the value of \(I _ { 6 }\), correct to 4 decimal places.
View full question →
Derive reduction formula by differentiation

A question is this type if and only if it asks to derive a reduction formula by considering the derivative of a given product expression (e.g., d/dx of x(1-x²)^n).

7 Challenging +1.7
6.0% of questions
Show example »
4 The integral \(\mathrm { I } _ { \mathrm { n } }\) is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 1 } \left( 1 + \mathrm { x } ^ { 5 } \right) ^ { \mathrm { n } } \mathrm { dx }\).
  1. By considering \(\frac { d } { d x } \left( x \left( 1 + x ^ { 5 } \right) ^ { n } \right)\), or otherwise, show that $$( 5 n + 1 ) l _ { n } = 2 ^ { n } + 5 n l _ { n - 1 }$$
  2. Find the exact value of \(I _ { 3 }\).
View full question →
Hyperbolic function reduction

A question is this type if and only if the integral I_n involves hyperbolic functions (sinh, cosh, tanh, sech) and requires deriving or using a reduction formula.

5 Challenging +1.8
4.3% of questions
Show example »
4. $$I _ { n } = \int \cosh ^ { n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 2\) $$n I _ { n } = \sinh x \cosh ^ { n - 1 } x + ( n - 1 ) I _ { n - 2 }$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \ln 2 } \cosh ^ { 5 } x \mathrm {~d} x$$
View full question →
Exponential times polynomial

A question is this type if and only if I_n involves e^(ax) or e^(f(x)) multiplied by x^n or a polynomial in x, where the exponential is the primary function being integrated with a polynomial factor.

4 Challenging +1.0
3.4% of questions
Show example »
4 You are given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { 2 x } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that \(I _ { n } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } n I _ { n - 1 }\) for \(n \geqslant 1\).
  2. Find \(I _ { 3 }\) in terms of e.
View full question →
Logarithmic power integrals

A question is this type if and only if I_n involves (ln x)^n or x^n(ln x)^m as the integrand.

4 Challenging +1.4
3.4% of questions
Show example »
5 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x$$
  1. Show that, for \(n \geqslant 1\), $$I _ { n } = \mathrm { e } - n I _ { n - 1 } .$$
  2. Find \(I _ { 3 }\) in terms of e.
View full question →
Mixed trigonometric products

A question is this type if and only if I_n involves products of different trigonometric functions with different powers (e.g., sin^m(x)cos^n(x)) requiring a two-index reduction formula.

3 Challenging +1.4
2.6% of questions
Show example »
5 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \sin ^ { 2 } x \mathrm {~d} x\), for \(n \geqslant 0\). By differentiating \(\cos ^ { n - 1 } x \sin ^ { 3 } x\) with respect to \(x\), prove that $$( n + 2 ) I _ { n } = ( n - 1 ) I _ { n - 2 } \quad \text { for } n \geqslant 2$$ Hence find the exact value of \(I _ { 4 }\).
View full question →
Establish bounds or inequalities

A question is this type if and only if it uses reduction formula results to prove inequalities or establish bounds on I_n or related constants (e.g., bounds on π or e).

3 Challenging +1.3
2.6% of questions
Show example »
7 It is given that, for non-negative integers \(n , I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } x \mathrm {~d} x\).
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geqslant 2\).
  2. Explain why \(I _ { 2 n + 1 } < I _ { 2 n - 1 }\).
  3. It is given that \(I _ { 2 n + 1 } < I _ { 2 n } < I _ { 2 n - 1 }\). Take \(n = 5\) to find an interval within which the value of \(\pi\) lies.
View full question →
Centroid and mean value

A question is this type if and only if it applies a reduction formula to find centroid coordinates, mean values, or center of mass.

2 Challenging +1.2
1.7% of questions
Show example »
9 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \mathrm {~d} \theta$$ where \(n\) is a non-negative integer. Show that \(I _ { n + 2 } = \frac { n + 1 } { n + 2 } I _ { n }\). The region \(R\) of the \(x - y\) plane is bounded by the \(x\)-axis, the line \(x = \frac { \pi } { 2 m }\) and the curve whose equation is \(y = \sin ^ { 4 } m x\), where \(m > 0\). Find the \(y\)-coordinate of the centroid of \(R\).
View full question →
Exponential times trigonometric power

A question is this type if and only if I_n involves e^(ax) multiplied by sin^n(x), cos^n(x), or other powers of trigonometric functions.

2 Challenging +1.8
1.7% of questions
Show example »
6. $$I _ { n } = \int \mathrm { e } ^ { x } \sin ^ { n } x \mathrm {~d} x \quad n \in \mathbb { Z } \quad n \geqslant 0$$
  1. Show that $$I _ { n } = \frac { \mathrm { e } ^ { x } \sin ^ { n - 1 } x } { n ^ { 2 } + 1 } ( \sin x - n \cos x ) + \frac { n ( n - 1 ) } { n ^ { 2 } + 1 } I _ { n - 2 } \quad n \geqslant 2$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } e ^ { x } \sin ^ { 4 } x d x$$ giving your answer in the form \(A \mathrm { e } ^ { \frac { \pi } { 2 } } + B\) where \(A\) and \(B\) are rational numbers to be determined.
View full question →
Volume and surface area of revolution

A question is this type if and only if it applies a reduction formula to calculate volume of revolution, surface area of revolution, or arc length of a curve.

1 Challenging +1.8
0.9% of questions
Show example »
  1. Find the value of \(I _ { 2 }\).
  2. Show that, for \(n > 2\), $$( n - 1 ) I _ { n } = 2 ^ { \frac { 1 } { 2 } n - 1 } + ( n - 2 ) I _ { n - 2 }$$
  3. The curve \(C\) has equation \(y = \sec ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\). The region \(R\) is bounded by \(C\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 4 } \pi\). Find the volume of revolution generated when \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
View full question →
Parametric or substitution setup

A question is this type if and only if it requires using a substitution (given or to be found) to transform the integral into a form involving I_n or to evaluate it.

1 Challenging +1.8
0.9% of questions
Show example »
Let \(I _ { n } = \int _ { 1 } ^ { \sqrt { } 2 } \left( x ^ { 2 } - 1 \right) ^ { n } \mathrm {~d} x\).
  1. Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 2 - 2 n I _ { n - 1 } .$$
  2. Using the substitution \(x = \sec \theta\), show that $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { 2 n + 1 } \theta \sec \theta \mathrm {~d} \theta$$
  3. Deduce the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 7 } \theta } { \cos ^ { 8 } \theta } \mathrm {~d} \theta$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
View full question →
Moment of inertia

A question is this type if and only if it applies integration (often with reduction formula techniques) to calculate moment of inertia of rigid bodies about various axes.

0
0.0% of questions
Show example »
6. Three equal uniform rods, each of mass \(m\) and length \(2 a\), form the sides of a rigid equilateral triangular frame \(A B C\). The frame is free to rotate in a vertical plane about a fixed smooth horizontal axis \(L\) which passes through \(A\) and is perpendicular to the plane of the frame.
  1. Show that the moment of inertia of the frame about \(L\) is \(6 m a ^ { 2 }\). The frame is held with \(A B\) horizontal and \(C\) below \(A B\), and released from rest. Given that the centre of mass of the frame is two thirds of the way along a median from a vertex,
  2. find the magnitude of the force exerted by the axis on the frame at \(A\) at the instant when the frame is released.
View full question →
Definite integral with special limits

A question is this type if and only if the reduction formula involves definite integrals with limits that produce specific numerical values (like powers of 2, 3, or expressions involving √2, √3) in the recurrence relation.

0
0.0% of questions
Apply reduction formula iteratively

A question is this type if and only if it asks to use a given or derived reduction formula repeatedly to find I_n for a larger value of n (typically n≥4), showing each step.

0
0.0% of questions
Basic integral evaluation

A question is this type if and only if it asks to evaluate I_n for a specific small value of n (typically n=1, 2, or 3) without deriving a reduction formula.

0
0.0% of questions
Unclassified

Questions not yet assigned to a type.

7
6.0% of questions
Show 7 unclassified »
10 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$ A curve has parametric equations \(x = a \sin ^ { 3 } t\) and \(y = a \cos ^ { 3 } t\), where \(a\) is a constant and \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\). Show that the mean value \(m\) of \(y\) over the interval \(0 \leqslant x \leqslant a\) is given by $$m = 3 a \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( \cos ^ { 4 } t - \cos ^ { 6 } t \right) \mathrm { d } t$$ Find the exact value of \(m\), in terms of \(a\).
4 Let \(I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x\). Prove that, for every positive integer \(n\), $$2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }$$ Given that \(I _ { 1 } = \frac { 1 } { 4 } \pi\), find the exact value of \(I _ { 3 }\).
10 It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 2 n } x } { \cos x } \mathrm {~d} x\), where \(n \geqslant 0\). Show that $$I _ { n } - I _ { n + 1 } = \frac { 2 ^ { - \left( n + \frac { 1 } { 2 } \right) } } { 2 n + 1 }$$ Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 6 } x } { \cos x } \mathrm {~d} x = \ln ( 1 + \sqrt { } 2 ) - \frac { 73 } { 120 } \sqrt { } 2\).
7 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), where \(n\) is a non-negative integer. Show that $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } , \quad \text { for } n \geqslant 2$$ Find the exact value of \(I _ { 4 }\).
6 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\).
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } + n ( n - 1 ) I _ { n - 2 } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } .$$
  2. Calculate the exact value of \(I _ { 1 }\) and deduce the exact value of \(I _ { 3 }\).
7 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x\). Show that, for all positive integers \(n\), $$I _ { n } = n I _ { n - 1 } - 1$$ Find the exact value of \(I _ { 4 }\). By considering the area of the region enclosed by the \(x\)-axis, the \(y\)-axis and the curve with equation \(y = ( 1 - x ) ^ { 4 } \mathrm { e } ^ { x }\) in the interval \(0 \leqslant x \leqslant 1\), show that $$\frac { 65 } { 24 } < \mathrm { e } < \frac { 11 } { 4 }$$
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2$$ Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\).