Edexcel FP3 2012 June — Question 4

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2012
SessionJune
TopicReduction Formulae

4. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } x ^ { n } \sin 2 x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { 4 } n \left( \frac { \pi } { 4 } \right) ^ { n - 1 } - \frac { 1 } { 4 } n ( n - 1 ) I _ { n - 2 }$$
  2. Find the exact value of \(I _ { 2 }\)
  3. Show that \(I _ { 4 } = \frac { 1 } { 64 } \left( \pi ^ { 3 } - 24 \pi + 48 \right)\)