Algebraic function with square root

A question is this type if and only if I_n involves x^n multiplied or divided by a square root of a polynomial (e.g., √(a²-x²), √(x²+a²), √(ax-x²)).

11 questions · Challenging +1.5

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2018 June Q8
12 marks Challenging +1.8
8. $$I _ { n } = \int \frac { x ^ { n } } { \sqrt { \left( x ^ { 2 } + k ^ { 2 } \right) } } \mathrm { d } x \quad \text { where } k \text { is a constant and } n \in \mathbb { Z } ^ { + }$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { x ^ { n - 1 } } { n } \left( x ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } } - \frac { ( n - 1 ) } { n } k ^ { 2 } I _ { n - 2 }$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \sqrt { \left( x ^ { 2 } + 1 \right) } } \mathrm { d } x$$
Edexcel F3 2022 June Q7
10 marks Challenging +1.8
7. $$I _ { n } = \int \frac { x ^ { n } } { \sqrt { 10 - x ^ { 2 } } } \mathrm {~d} x \quad n \in \mathbb { N } \quad | x | < \sqrt { 10 }$$
  1. Show that $$n I _ { n } = 10 ( n - 1 ) I _ { n - 2 } - x ^ { n - 1 } \left( 10 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \quad n \geqslant 2$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \sqrt { 10 - x ^ { 2 } } } \mathrm {~d} x$$ giving your answer in the form \(\frac { 1 } { 15 } ( p \sqrt { 10 } + q )\) where \(p\) and \(q\) are integers to be determined.
Edexcel FP3 2009 June Q5
11 marks Challenging +1.3
5. $$I _ { n } = \int _ { 0 } ^ { 5 } \frac { x ^ { n } } { \sqrt { } \left( 25 - x ^ { 2 } \right) } d x , \quad n \geqslant 0$$
  1. Find an expression for \(\int \frac { x } { \sqrt { } \left( 25 - x ^ { 2 } \right) } \mathrm { d } x , \quad 0 \leqslant x \leqslant 5\).
  2. Using your answer to part (a), or otherwise, show that $$I _ { n } = \frac { 25 ( n - 1 ) } { n } I _ { n - 2 } \quad n \geqslant 2$$
  3. Find \(I _ { 4 }\) in the form \(k \pi\), where \(k\) is a fraction.
Edexcel FP3 2013 June Q6
11 marks Challenging +1.8
  1. Given that
$$I _ { n } = \int _ { 0 } ^ { 4 } x ^ { n } \sqrt { } \left( 16 - x ^ { 2 } \right) \mathrm { d } x , \quad n \geqslant 0$$
  1. prove that, for \(n \geqslant 2\), $$( n + 2 ) I _ { n } = 16 ( n - 1 ) I _ { n - 2 }$$
  2. Hence, showing each step of your working, find the exact value of \(I _ { 5 }\)
Edexcel FP3 2018 June Q5
11 marks Challenging +1.2
5. Given that $$I _ { n } = \int x ^ { n } \sqrt { ( x + 8 ) } \mathrm { d } x , \quad n \geqslant 0 , x \geqslant 0$$
  1. show that, for \(n \geqslant 1\) $$I _ { n } = \frac { p x ^ { n } ( x + 8 ) ^ { \frac { 3 } { 2 } } } { 2 n + 3 } - \frac { q n } { 2 n + 3 } I _ { n - 1 }$$ where \(p\) and \(q\) are constants to be found.
  2. Use part (a) to find the exact value of $$\int _ { 0 } ^ { 10 } x ^ { 2 } \sqrt { ( x + 8 ) } d x$$ giving your answer in the form \(k \sqrt { 2 }\), where \(k\) is rational.
CAIE FP1 2009 November Q6
9 marks Challenging +1.3
6 Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ x ^ { n - 1 } \sqrt { } \left( 4 - x ^ { 2 } \right) \right] = \frac { 4 ( n - 1 ) x ^ { n - 2 } } { \sqrt { } \left( 4 - x ^ { 2 } \right) } - \frac { n x ^ { n } } { \sqrt { } \left( 4 - x ^ { 2 } \right) }$$ Let $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } \left( 4 - x ^ { 2 } \right) } \mathrm { d } x$$ where \(n \geqslant 0\). Prove that $$n I _ { n } = 4 ( n - 1 ) I _ { n - 2 } - \sqrt { } 3$$ for \(n \geq 2\). Given that \(I _ { 0 } = \frac { 1 } { 6 } \pi\), find \(I _ { 4 }\), leaving your answer in an exact form.
CAIE FP1 2012 November Q11
13 marks Challenging +1.2
11 Show that \(\int x \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = - \frac { 1 } { 3 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } + c\), where \(c\) is a constant. Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), prove that, for \(n \geqslant 2\), $$( n + 2 ) I _ { n } = ( n - 1 ) I _ { n - 2 }$$ Use the substitution \(x = \sin u\) to show that $$\int _ { 0 } ^ { 1 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 1 } { 4 } \pi$$ Find \(I _ { 4 }\).
CAIE FP1 2013 November Q4
7 marks Challenging +1.2
4 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } ( 1 + 2 x ) } \mathrm { d } x$$ Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 3 - n I _ { n - 1 }$$ Show that $$I _ { 3 } = \frac { 2 } { 35 } ( \sqrt { } 3 + 1 )$$
OCR Further Additional Pure 2022 June Q7
10 marks Challenging +1.8
7
  1. Differentiate \(\left( 16 + t ^ { 2 } \right) ^ { \frac { 3 } { 2 } }\) with respect to \(t\). Let \(I _ { n } = \int _ { 0 } ^ { 3 } t ^ { n } \sqrt { 16 + t ^ { 2 } } d t\) for integers \(n \geqslant 1\).
  2. Show that, for \(n \geqslant 3 , \left. ( n + 2 ) \right| _ { n } = 125 \times 3 ^ { n - 1 } - \left. 16 ( n - 1 ) \right| _ { n - 2 }\).
  3. The curve \(C\) is defined parametrically by \(\mathrm { x } = \mathrm { t } ^ { 4 } \cos \mathrm { t }\), \(\mathrm { y } = \mathrm { t } ^ { 4 } \sin \mathrm { t }\), for \(0 \leqslant t \leqslant 3\). The length of \(C\) is denoted by \(L\). Show that \(\mathrm { L } = \mathrm { I } _ { 3 }\). (You are not required to evaluate this integral.)
OCR Further Additional Pure 2024 June Q7
10 marks Challenging +1.8
7 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 2 } \frac { \mathrm { x } ^ { \mathrm { n } } } { \sqrt { \mathrm { x } ^ { 3 } + 1 } } \mathrm { dx }\) for integers \(n > 0\).
  1. By considering the derivative of \(\sqrt { x ^ { 3 } + 1 }\) with respect to \(x\), determine the exact value of \(I _ { 2 }\).
  2. Given that \(n > 3\), show that \(\left. ( 2 n - 1 ) \right| _ { n } = 3 \times 2 ^ { n - 1 } - \left. 2 ( n - 2 ) \right| _ { n - 3 }\).
  3. Hence determine the exact value of \(\int _ { 0 } ^ { 2 } x ^ { 5 } \sqrt { x ^ { 3 } + 1 } \mathrm {~d} x\).
OCR Further Additional Pure 2018 December Q6
13 marks Challenging +1.8
6 For positive integers \(n\), the integrals \(I _ { n }\) are given by \(I _ { n } = \int _ { 1 } ^ { 5 } x ^ { n } \sqrt { 2 + x ^ { 2 } } \mathrm {~d} x\).
  1. Show that \(I _ { 1 } = 26 \sqrt { 3 }\).
  2. Prove that, for \(n \geqslant 3 , ( n + 2 ) I _ { n } = 3 \sqrt { 3 } \left( 27 \times 5 ^ { n - 1 } - 1 \right) - 2 ( n - 1 ) I _ { n - 2 }\).
  3. Determine the exact value of \(I _ { 5 }\) as a rational multiple of \(\sqrt { 3 }\).