Derive reduction formula by integration by parts

A question is this type if and only if it asks to derive a reduction formula using integration by parts, typically for integrals involving products like x^n·f(x) or trigonometric powers.

7 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q2
6 marks Challenging +1.3
2 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 1 } ( 1 + 3 \mathrm { x } ) ^ { \mathrm { n } } \mathrm { e } ^ { - 3 \mathrm { x } } \mathrm { dx }\), where \(n\) is an integer.
  1. Show that \(3 \mathrm { I } _ { \mathrm { n } } = 1 - 4 ^ { \mathrm { n } } \mathrm { e } ^ { - 3 } + 3 \mathrm { nl } _ { \mathrm { n } - 1 }\).
  2. Find the exact value of \(I _ { 2 }\).
Edexcel F3 2021 January Q6
10 marks Challenging +1.2
6. $$I _ { n } = \int \frac { x ^ { n } } { \sqrt { x ^ { 2 } + 3 } } \mathrm {~d} x \quad n \in \mathbb { N }$$
  1. Show that $$I _ { n } = \frac { x ^ { n - 1 } } { n } \left( x ^ { 2 } + 3 \right) ^ { \frac { 1 } { 2 } } - \frac { 3 ( n - 1 ) } { n } I _ { n - 2 } \quad n \geqslant 3$$
  2. Hence show that $$\int \frac { x ^ { 5 } } { \sqrt { x ^ { 2 } + 3 } } \mathrm {~d} x = \frac { 1 } { 5 } \left( x ^ { 2 } + 3 \right) ^ { \frac { 1 } { 2 } } \left( x ^ { 4 } + p x ^ { 2 } + q \right) + k$$ where \(p\) and \(q\) are integers to be determined and \(k\) is an arbitrary constant.
OCR FP2 2010 June Q5
8 marks Challenging +1.2
5 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } } ( 1 - 2 x ) ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 1\), $$I _ { n } = 2 n I _ { n - 1 } - 1$$
  2. Find the exact value of \(I _ { 3 }\).
CAIE FP1 2019 June Q4
8 marks Challenging +1.2
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { x ^ { 3 } } \mathrm {~d} x$$
  1. Show that \(I _ { 2 } = \frac { 1 } { 3 } ( \mathrm { e } - 1 )\).
  2. Show that, for \(n \geqslant 3\), $$3 I _ { n } = \mathrm { e } - ( n - 2 ) I _ { n - 3 }$$
  3. Hence find the exact value of \(I _ { 8 }\).
CAIE FP1 2002 November Q4
7 marks Challenging +1.2
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } e ^ { - x ^ { 2 } } d x$$
  1. Find \(I _ { 1 }\) in terms of c .
  2. Show that $$I _ { n + 2 } = \frac { n + 1 } { 2 } I _ { n } - \frac { 1 } { 2 \mathrm { e } }$$
  3. Find \(I _ { 5 }\) in terms of \(e\).
CAIE FP1 2010 November Q5
8 marks Challenging +1.2
5 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \sin x \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n + 2 } = 1 - ( n + 1 ) ( n + 2 ) I _ { n }$$ Hence find the value of \(I _ { 6 }\), correct to 4 decimal places.
CAIE FP1 2019 November Q3
7 marks Challenging +1.8
3 The integral \(I _ { n }\), where \(n\) is a positive integer, is defined by $$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
  1. Show that $$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
  2. Find \(I _ { 5 }\) in terms of \(\pi\) and \(I _ { 1 }\).