4 You are given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { 2 x } \mathrm {~d} x\) for \(n \geqslant 0\).
- Show that \(I _ { n } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } n I _ { n - 1 }\) for \(n \geqslant 1\).
- Find \(I _ { 3 }\) in terms of e.