Trigonometric power reduction

A question is this type if and only if the integral I_n involves powers of sin(x), cos(x), tan(x), sec(x), cosec(x), or cot(x) and requires deriving or using a reduction formula specific to trigonometric functions.

17 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2023 January Q8
11 marks Challenging +1.2
8. $$I _ { n } = \int \cos ^ { n } x \mathrm {~d} x \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { 1 } { n } \cos ^ { n - 1 } x \sin x + \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Show that for positive even integers \(n\) $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { n } x d x = \frac { ( n - 1 ) ( n - 3 ) \ldots 5 \times 3 \times 1 } { n ( n - 2 ) ( n - 4 ) \ldots 6 \times 4 \times 2 } \times \overline { 2 }$$
  3. Hence determine the exact value of $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { 6 } x \sin ^ { 2 } x d x$$
    GUV SIHI NI JIVM ION OCVJYV SIHI NI JIIIM ION OCVJ4V SIHIANI JIIIM ION OO
Edexcel F3 2014 June Q5
11 marks Challenging +1.8
  1. Given that
$$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { n } \theta \mathrm {~d} \theta , \quad n \geqslant 0$$
  1. prove that, for \(n \geqslant 2\), $$n I _ { n } = \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { n } + ( n - 1 ) I _ { n - 2 }$$
  2. Hence find the exact value of \(I _ { 5 }\), showing each step of your working.
Edexcel F3 2017 June Q5
9 marks Challenging +1.8
5. $$I _ { n } = \int \operatorname { cosec } ^ { n } x \mathrm {~d} x , \quad 0 < x < \frac { \pi } { 2 } , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { n - 2 } { n - 1 } I _ { n - 2 } - \frac { 1 } { n - 1 } \cot x \operatorname { cosec } ^ { n - 2 } x$$
  2. Hence, or otherwise, find $$\int \operatorname { cosec } ^ { 4 } x \mathrm {~d} x$$ giving your answer in terms of \(\cot x\).
Edexcel FP3 Q5
10 marks Challenging +1.8
5. $$\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { \mathrm { n } } x \mathrm { dx } , \mathrm { n } \geqslant 0$$
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\), for \(n \geqslant 2\)
  2. Using the result in part (a), find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } x \sin ^ { 5 } x \cos x d x$$
Edexcel F3 2021 June Q4
8 marks Challenging +1.3
4. (i) $$f ( x ) = x \arccos x \quad - 1 \leqslant x \leqslant 1$$ Find the exact value of \(f ^ { \prime } ( 0.5 )\).
(ii) $$\mathrm { g } ( x ) = \arctan \left( \mathrm { e } ^ { 2 x } \right)$$ Show that $$\mathrm { g } ^ { \prime \prime } ( x ) = k \operatorname { sech } ( 2 x ) \tanh ( 2 x )$$ where \(k\) is a constant to be found. \includegraphics[max width=\textwidth, alt={}, center]{d7a92540-e36c-4e00-bbe4-b253e09962f8-15_2647_1840_119_114}
  1. Prove that for \(n \geqslant 2\) $$( n - 1 ) I _ { n } = \tan x \sec ^ { n - 2 } x + ( n - 2 ) I _ { n - 2 }$$
  2. Hence, showing each step of your working, find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \sec ^ { 6 } x d x$$ $$I _ { n } = \int \sec ^ { n } x \mathrm {~d} x \quad n \geqslant 0$$ Prove that for \(n > 2\)
Edexcel FP3 2015 June Q7
11 marks Challenging +1.2
7. $$I _ { n } = \int \sin ^ { n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { 1 } { n } \left( - \sin ^ { n - 1 } x \cos x + ( n - 1 ) I _ { n - 2 } \right)$$ Given that \(n\) is an odd number, \(n \geqslant 3\)
  2. show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } x \mathrm {~d} x = \frac { ( n - 1 ) ( n - 3 ) \ldots 6.4 .2 } { n ( n - 2 ) ( n - 4 ) \ldots 7.5 .3 }$$
  3. Hence find \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { 5 } x \cos ^ { 2 } x d x\)
OCR FP2 2009 June Q9
14 marks Challenging +1.2
9
  1. It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \mathrm {~d} \theta$$ Show that, for \(n \geqslant 2\), $$n I _ { n } = ( n - 1 ) I _ { n - 2 } .$$
  2. The equation of a curve, in polar coordinates, is $$r = \sin ^ { 3 } \theta , \quad \text { for } 0 \leqslant \theta \leqslant \pi$$ (a) Find the equations of the tangents at the pole and sketch the curve.
    (b) Find the exact area of the region enclosed by the curve. RECOGNISING ACHIEVEMENT
OCR FP2 2013 June Q4
8 marks Challenging +1.2
4 It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geqslant 2\).
  2. Hence find \(I _ { 11 }\) as an exact fraction.
CAIE FP1 2018 June Q9
10 marks Challenging +1.8
9
  1. Using the substitution \(u = \tan x\), or otherwise, find \(\int \sec ^ { 2 } x \tan ^ { 2 } x \mathrm {~d} x\).
    It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \tan ^ { 2 } x \mathrm {~d} x$$
  2. Using the result that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x ) = \tan x \sec x\), show that, for \(n \geqslant 2\), $$( n + 1 ) I _ { n } = ( \sqrt { } 2 ) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 }$$
  3. Hence find the mean value of \(\sec ^ { 4 } x \tan ^ { 2 } x\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\), giving your answer in exact form.
AQA Further Paper 2 Specimen Q8
5 marks Challenging +1.2
8 Given that \(I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } x \mathrm {~d} x \quad n \geq 0\) show that \(n I _ { n } = ( n - 1 ) I _ { n - 2 } \quad n \geq 2\) [0pt] [5 marks]
OCR Further Additional Pure 2021 November Q7
8 marks Challenging +1.2
7 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { \mathrm { n } } \mathrm { xdx }\) for integers \(n \geqslant 0\).
  1. Show that, for \(n \geqslant 2 , \quad \mathrm { nl } _ { \mathrm { n } } = ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } - 2 }\).
  2. Use this reduction formula to deduce the exact value of \(I _ { 8 }\).
  3. Use the results of parts (a) and (b) to determine the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { 6 } x \sin ^ { 2 } x d x\).
OCR Further Additional Pure Specimen Q5
9 marks Challenging +1.3
5 In this question you must show detailed reasoning.
It is given that \(I _ { n } = \int _ { 0 } ^ { \pi } \sin ^ { n } \theta \mathrm {~d} \theta\) for \(n \geq 0\).
  1. Prove that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geq 2\).
  2. (a) Evaluate \(I _ { 1 }\).
    (b) Use the reduction formula to determine the exact value of \(\int _ { 0 } ^ { \pi } \cos ^ { 2 } \theta \sin ^ { 5 } \theta \mathrm {~d} \theta\).
Edexcel FP2 2019 June Q5
8 marks Challenging +1.8
5. $$I _ { n } = \int \operatorname { cosec } ^ { n } x \mathrm {~d} x \quad n \in \mathbb { Z }$$
  1. Prove that, for \(n \geqslant 2\) $$I _ { n } = \frac { n - 2 } { n - 1 } I _ { n - 2 } - \frac { \operatorname { cosec } ^ { n - 2 } x \cot x } { n - 1 }$$
  2. Hence show that $$\int _ { \frac { \pi } { 3 } } ^ { \frac { \pi } { 2 } } \operatorname { cosec } ^ { 6 } x \mathrm {~d} x = \frac { 56 } { 135 } \sqrt { 3 }$$
Edexcel FP2 2022 June Q9
7 marks Challenging +1.8
9. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } 2 x d x$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Hence determine the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } 64 \sin ^ { 5 } x \cos ^ { 5 } x d x$$
Edexcel FP2 Specimen Q7
9 marks Challenging +1.2
7. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Prove that, for \(n \geqslant 2\), $$n I _ { n } = ( n - 1 ) I _ { n - 2 }$$
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1c262813-4160-4eda-9a36-e4ba38182c8a-22_588_1018_630_520} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} A designer is asked to produce a poster to completely cover the curved surface area of a solid cylinder which has diameter 1 m and height 0.7 m . He uses a large sheet of paper with height 0.7 m and width of \(\pi \mathrm { m }\).
    Figure 2 shows the first stage of the design, where the poster is divided into two sections by a curve. The curve is given by the equation $$y = \sin ^ { 2 } ( 4 x ) - \sin ^ { 10 } ( 4 x )$$ relative to axes taken along the bottom and left hand edge of the paper.
    The region of the poster below the curve is shaded and the region above the curve remains unshaded, as shown in Figure 2. Find the exact area of the poster which is shaded.
OCR Further Additional Pure 2017 Specimen Q5
9 marks Challenging +1.2
5 In this question you must show detailed reasoning.
It is given that \(I _ { n } = \int _ { 0 } ^ { \pi } \sin ^ { n } \theta \mathrm {~d} \theta\) for \(n \geq 0\).
  1. Prove that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geq 2\).
  2. Evaluate \(I _ { 1 }\) and use the reduction formula to determine the exact value of \(\int _ { 0 } ^ { \pi } \cos ^ { 2 } \theta \sin ^ { 5 } \theta \mathrm {~d} \theta\).
AQA Further Paper 2 2024 June Q20
9 marks Challenging +1.2
20 The integral \(I _ { n }\) is defined by $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { n } x \mathrm {~d} x \quad ( n \geq 0 )$$ 20
  1. Show that $$I _ { n } = \left( \frac { n - 1 } { n } \right) I _ { n - 2 } + \frac { 1 } { n \left( 2 ^ { \frac { n } { 2 } } \right) } \quad ( n \geq 2 )$$ 20
  2. Use the result from part (a) to show that $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { 6 } x d x = \frac { a \pi + b } { 192 }$$ where \(a\) and \(b\) are integers to be found. \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-31_2491_1755_173_123} number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} Additional page, if required. number Additional page, if required.
    Write the question numbers in the left-hand margin. number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} number\section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.}
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-36_2487_1748_175_130}