10 It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 2 n } x } { \cos x } \mathrm {~d} x\), where \(n \geqslant 0\). Show that
$$I _ { n } - I _ { n + 1 } = \frac { 2 ^ { - \left( n + \frac { 1 } { 2 } \right) } } { 2 n + 1 }$$
Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 6 } x } { \cos x } \mathrm {~d} x = \ln ( 1 + \sqrt { } 2 ) - \frac { 73 } { 120 } \sqrt { } 2\).
Show LaTeX source
10 It is given that $I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 2 n } x } { \cos x } \mathrm {~d} x$, where $n \geqslant 0$. Show that
$$I _ { n } - I _ { n + 1 } = \frac { 2 ^ { - \left( n + \frac { 1 } { 2 } \right) } } { 2 n + 1 }$$
Hence show that $\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 6 } x } { \cos x } \mathrm {~d} x = \ln ( 1 + \sqrt { } 2 ) - \frac { 73 } { 120 } \sqrt { } 2$.
\hfill \mbox{\textit{CAIE FP1 2014 Q10}}