| Exam Board | AQA |
| Module | Further Paper 2 (Further Paper 2) |
| Session | Specimen |
| Marks | 5 |
| Topic | Reduction Formulae |
8 Given that \(I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } x \mathrm {~d} x \quad n \geq 0\)
show that \(n I _ { n } = ( n - 1 ) I _ { n - 2 } \quad n \geq 2\)
[0pt]
[5 marks]