OCR FP2 2012 June — Question 6

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJune
TopicReduction Formulae

6 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \pi } x ^ { n } \sin x \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 2 , I _ { n } = \pi ^ { n } - n ( n - 1 ) I _ { n - 2 }\).
  2. Find \(I _ { 5 }\) in terms of \(\pi\).