CAIE
FP1
2013
November
Q11 EITHER
Challenging +1.2
Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 2 } \right) ^ { n } \mathrm {~d} x\). Show that, for all integers \(n\),
$$( 2 n + 1 ) I _ { n } = 2 n I _ { n - 1 } + 2 ^ { n }$$
Evaluate \(I _ { 0 }\) and hence find \(I _ { 3 }\).
Given that \(I _ { - 1 } = \frac { 1 } { 4 } \pi\), find \(I _ { - 3 }\).
CAIE
FP1
2011
November
Q6
8 marks
Challenging +1.2
6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\),
$$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$
Hence find the exact value of \(I _ { 3 }\).