Compound expressions with binomial expansion

A question is this type if and only if the integrand involves (a+bx)^n or similar binomial expressions that may require expansion or special reduction techniques.

9 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2024 June Q8
9 marks Challenging +1.8
8. $$I _ { n } = \int _ { 0 } ^ { k } x ^ { n } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \quad n \geqslant 0$$ where \(k\) is a positive constant.
  1. Show that $$I _ { n } = \frac { 2 k n } { 3 + 2 n } I _ { n - 1 } \quad n \geqslant 1$$ Given that $$\int _ { 0 } ^ { k } x ^ { 2 } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 9 \sqrt { 3 } } { 280 }$$
  2. use the result in part (a) to determine the exact value of \(k\).
Edexcel FP3 2010 June Q4
8 marks Challenging +1.8
4. \(\quad I _ { n } = \int _ { 0 } ^ { a } ( a - x ) ^ { n } \cos x \mathrm {~d} x , \quad a > 0 , \quad n \geqslant 0\)
  1. Show that, for \(n \geqslant 2\), $$I _ { n } = n \tilde { a } ^ { - 1 } - n ( n - 1 ) I _ { n - 2 }$$
  2. Hence evaluate \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( \frac { \pi } { 2 } - x \right) ^ { 2 } \cos x \mathrm {~d} x\).
Edexcel FP3 2013 June Q5
10 marks Challenging +1.8
5. $$I _ { n } = \int _ { 1 } ^ { 5 } x ^ { n } ( 2 x - 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x , \quad n \geqslant 0$$
  1. Prove that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = n I _ { n - 1 } + 3 \times 5 ^ { n } - 1$$
  2. Using the reduction formula given in part (a), find the exact value of \(I _ { 2 }\)
Edexcel FP3 2014 June Q4
11 marks Challenging +1.2
4. $$I _ { n } = \int _ { 0 } ^ { \sqrt { 3 } } \left( 3 - x ^ { 2 } \right) ^ { n } \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 1\) $$I _ { n } = \frac { 6 n } { 2 n + 1 } I _ { n - 1 }$$
  2. Hence find the exact value of \(I _ { 4 }\), giving your answer in the form \(k \sqrt { 3 }\) where \(k\) is a rational number to be found.
OCR FP2 2011 June Q6
10 marks Challenging +1.2
6 It is given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 3 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\).
  1. Show that \(I _ { n } = \frac { 2 n } { 2 n + 5 } I _ { n - 1 }\), for \(n \geqslant 1\).
  2. Hence find the exact value of \(I _ { 3 }\).
OCR FP2 Specimen Q6
10 marks Challenging +1.2
6
  1. Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \sqrt { } ( 1 - x ) \mathrm { d } x\), prove that, for \(n \geqslant 1\), $$( 2 n + 3 ) I _ { n } = 2 n I _ { n - 1 } .$$
  2. Hence find the exact value of \(I _ { 2 }\).
CAIE FP1 2011 November Q7
9 marks Challenging +1.2
7 Show that \(\frac { \mathrm { d } } { \mathrm { d } t } \left( t \left( 1 + t ^ { 3 } \right) ^ { n } \right) = ( 3 n + 1 ) \left( 1 + t ^ { 3 } \right) ^ { n } - 3 n \left( 1 + t ^ { 3 } \right) ^ { n - 1 }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + t ^ { 3 } \right) ^ { n } \mathrm {~d} t\). Using the above result, or otherwise, show that $$( 3 n + 1 ) I _ { n } = 2 ^ { n } + 3 n I _ { n - 1 }$$ Hence evaluate \(I _ { 3 }\).
CAIE FP1 2013 November Q11 EITHER
Challenging +1.2
Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 2 } \right) ^ { n } \mathrm {~d} x\). Show that, for all integers \(n\), $$( 2 n + 1 ) I _ { n } = 2 n I _ { n - 1 } + 2 ^ { n }$$ Evaluate \(I _ { 0 }\) and hence find \(I _ { 3 }\). Given that \(I _ { - 1 } = \frac { 1 } { 4 } \pi\), find \(I _ { - 3 }\).
CAIE FP1 2011 November Q6
8 marks Challenging +1.2
6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\), $$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$ Hence find the exact value of \(I _ { 3 }\).