8.
$$I _ { n } = \int \frac { x ^ { n } } { \sqrt { \left( x ^ { 2 } + k ^ { 2 } \right) } } \mathrm { d } x \quad \text { where } k \text { is a constant and } n \in \mathbb { Z } ^ { + }$$
- Show that, for \(n \geqslant 2\)
$$I _ { n } = \frac { x ^ { n - 1 } } { n } \left( x ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } } - \frac { ( n - 1 ) } { n } k ^ { 2 } I _ { n - 2 }$$
- Hence find the exact value of
$$\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \sqrt { \left( x ^ { 2 } + 1 \right) } } \mathrm { d } x$$