OCR FP2 2008 June — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicReduction Formulae

5 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$
  1. By considering \(I _ { n } + I _ { n - 2 }\), or otherwise, show that, for \(n \geqslant 2\), $$( n - 1 ) \left( I _ { n } + I _ { n - 2 } \right) = 1 .$$
  2. Find \(I _ { 4 }\) in terms of \(\pi\).