Exponential times trigonometric power

A question is this type if and only if I_n involves e^(ax) multiplied by sin^n(x), cos^n(x), or other powers of trigonometric functions.

2 questions · Challenging +1.8

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2022 January Q6
10 marks Challenging +1.8
6. $$I _ { n } = \int \mathrm { e } ^ { x } \sin ^ { n } x \mathrm {~d} x \quad n \in \mathbb { Z } \quad n \geqslant 0$$
  1. Show that $$I _ { n } = \frac { \mathrm { e } ^ { x } \sin ^ { n - 1 } x } { n ^ { 2 } + 1 } ( \sin x - n \cos x ) + \frac { n ( n - 1 ) } { n ^ { 2 } + 1 } I _ { n - 2 } \quad n \geqslant 2$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } e ^ { x } \sin ^ { 4 } x d x$$ giving your answer in the form \(A \mathrm { e } ^ { \frac { \pi } { 2 } } + B\) where \(A\) and \(B\) are rational numbers to be determined.
CAIE FP1 2012 June Q11 EITHER
Challenging +1.8
Show that $$\int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin x \mathrm {~d} x = \frac { 1 + \mathrm { e } ^ { \pi } } { 2 }$$ Given that $$I _ { n } = \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin ^ { n } x \mathrm {~d} x$$ show that, for \(n \geqslant 2\), $$I _ { n } = n ( n - 1 ) \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \cos ^ { 2 } x \sin ^ { n - 2 } x \mathrm {~d} x - n I _ { n }$$ and deduce that $$\left( n ^ { 2 } + 1 \right) I _ { n } = n ( n - 1 ) I _ { n - 2 } .$$ A curve has equation \(y = \mathrm { e } ^ { x } \sin ^ { 5 } x\). Find, in an exact form, the mean value of \(y\) over the interval \(0 \leqslant x \leqslant \pi\).