Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP1 2020 June Q3
  1. The points \(A , B\) and \(C\), with position vectors \(\mathbf { a } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } , \mathbf { b } = \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }\) and \(\mathbf { c } = - 2 \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k }\) respectively, lie on the plane \(\Pi\)
    1. Find \(\overrightarrow { A B } \times \overrightarrow { A C }\)
    2. Find an equation for \(\Pi\) in the form r.n \(= p\)
    The point \(D\) has position vector \(8 \mathbf { i } + 7 \mathbf { j } + 5 \mathbf { k }\)
  2. Determine the volume of the tetrahedron \(A B C D\)
Edexcel FP1 2020 June Q4
4. $$f ( x ) = x ^ { 4 } \sin ( 2 x )$$ Use Leibnitz's theorem to show that the coefficient of \(( x - \pi ) ^ { 8 }\) in the Taylor series expansion of \(\mathrm { f } ( x )\) about \(\pi\) is $$\frac { a \pi + b \pi ^ { 3 } } { 315 }$$ where \(a\) and \(b\) are integers to be determined. The Taylor series expansion of \(\mathrm { f } ( \mathrm { x } )\) about \(\mathrm { x } = \mathrm { k }\) is given by $$f ( x ) = f ( k ) + ( x - k ) f ^ { \prime } ( k ) + \frac { ( x - k ) ^ { 2 } } { 2 ! } f ^ { \prime \prime } ( k ) + \ldots + \frac { ( x - k ) ^ { r } } { r ! } f ^ { ( r ) } ( k ) + \ldots$$
Edexcel FP1 2020 June Q5
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 16 } = 1$$ The points \(S\) and \(S ^ { \prime }\) are the foci of \(E\).
  1. Find the coordinates of \(S\) and \(S ^ { \prime }\)
  2. Show that for any point \(P\) on \(E\), the triangle \(P S S ^ { \prime }\) has constant perimeter and determine its value.
Edexcel FP1 2020 June Q6
  1. A physics student is studying the movement of particles in an electric field. In one experiment, the distances in micrometres of two moving particles, \(A\) and \(B\), from a fixed point \(O\) are modelled by
$$\begin{aligned} & d _ { A } = | 5 t - 31 |
& d _ { B } = \left| 3 t ^ { 2 } - 25 t + 8 \right| \end{aligned}$$ respectively, where \(t\) is the time in seconds after motion begins.
  1. Use algebra to find the range of time for which particle \(A\) is further away from \(O\) than particle \(B\) is from \(O\). It was recorded that the distance of particle \(B\) from \(O\) was less than the distance of particle \(A\) from \(O\) for approximately 4 seconds.
  2. Use this information to assess the validity of the model.
Edexcel FP1 2020 June Q7
  1. The points \(P \left( 9 p ^ { 2 } , 18 p \right)\) and \(Q \left( 9 q ^ { 2 } , 18 q \right) , p \neq q\), lie on the parabola \(C\) with equation
$$y ^ { 2 } = 36 x$$ The line \(l\) passes through the points \(P\) and \(Q\)
  1. Show that an equation for the line \(l\) is $$( p + q ) y = 2 ( x + 9 p q )$$ The normal to \(C\) at \(P\) and the normal to \(C\) at \(Q\) meet at the point \(A\).
  2. Show that the coordinates of \(A\) are $$\left( 9 \left( p ^ { 2 } + q ^ { 2 } + p q + 2 \right) , - 9 p q ( p + q ) \right)$$ Given that the points \(P\) and \(Q\) vary such that \(l\) always passes through the point \(( 12,0 )\)
  3. find, in the form \(y ^ { 2 } = \mathrm { f } ( x )\), an equation for the locus of \(A\), giving \(\mathrm { f } ( x )\) in simplest form.
Edexcel FP1 2020 June Q8
8. $$f ( x ) = \frac { 3 } { 13 + 6 \sin x - 5 \cos x }$$ Using the substitution \(t = \tan \left( \frac { x } { 2 } \right)\)
  1. show that \(\mathrm { f } ( x )\) can be written in the form $$\frac { 3 \left( 1 + t ^ { 2 } \right) } { 2 ( 3 t + 1 ) ^ { 2 } + 6 }$$
  2. Hence solve, for \(0 < x < 2 \pi\), the equation $$\mathrm { f } ( x ) = \frac { 3 } { 7 }$$ giving your answers to 2 decimal places where appropriate.
  3. Use the result of part (a) to show that $$\int _ { \frac { \pi } { 3 } } ^ { \frac { 4 \pi } { 3 } } f ( x ) d x = K \left( \arctan \left( \frac { \sqrt { 3 } - 9 } { 3 } \right) - \arctan \left( \frac { \sqrt { 3 } + 3 } { 3 } \right) + \pi \right)$$ where \(K\) is a constant to be determined.
Edexcel FP1 2021 June Q1
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 20 } = 1$$ Find
  1. the coordinates of the foci of \(E\),
  2. the equations of the directrices of \(E\).
Edexcel FP1 2021 June Q2
  1. (i) Use the substitution \(t = \tan \frac { X } { 2 }\) to prove the identity
$$\frac { \sin x - \cos x + 1 } { \sin x + \cos x - 1 } \equiv \sec x + \tan x \quad x \neq \frac { n \pi } { 2 } \quad n \in \mathbb { Z }$$ (ii) Use the substitution \(t = \tan \frac { \theta } { 2 }\) to determine the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \frac { 5 } { 4 + 2 \cos \theta } d \theta$$ giving your answer in simplest form.
Edexcel FP1 2021 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55803551-f13d-419f-8b51-31642bd20b6a-08_494_780_258_644} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = \frac { x } { | x | - 2 }$$ Use algebra to determine the values of \(x\) for which $$2 x - 5 > \frac { x } { | x | - 2 }$$
Edexcel FP1 2021 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55803551-f13d-419f-8b51-31642bd20b6a-12_474_1063_264_502} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A small aircraft is landing in a field.
In a model for the landing the aircraft travels in different straight lines before and after it lands, as shown in Figure 2. The vector \(\mathbf { v } _ { \mathbf { A } }\) is in the direction of travel of the aircraft as it approaches the field.
The vector \(\mathbf { V } _ { \mathbf { L } }\) is in the direction of travel of the aircraft after it lands.
With respect to a fixed origin, the field is modelled as the plane with equation $$x - 2 y + 25 z = 0$$ and $$\mathbf { v } _ { \mathbf { A } } = \left( \begin{array} { r } 3
- 2
- 1 \end{array} \right)$$
  1. Write down a vector \(\mathbf { n }\) that is a normal vector to the field.
  2. Show that \(\mathbf { n } \times \mathbf { v } _ { \mathbf { A } } = \lambda \left( \begin{array} { r } 13
    19
    1 \end{array} \right)\), where \(\lambda\) is a constant to be determined. When the aircraft lands it remains in contact with the field and travels in the direction \(\mathbf { v } _ { \mathbf { L } }\) The vector \(\mathbf { v } _ { \mathbf { L } }\) is in the same plane as both \(\mathbf { v } _ { \mathbf { A } }\) and \(\mathbf { n }\) as shown in Figure 2.
  3. Determine a vector which has the same direction as \(\mathbf { V } _ { \mathbf { L } }\)
  4. State a limitation of the model.
Edexcel FP1 2021 June Q5
  1. The parabola \(C\) has equation
$$y ^ { 2 } = 32 x$$ and the hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1$$
  1. Write down the equations of the asymptotes of \(H\). The line \(l _ { 1 }\) is normal to \(C\) and parallel to the asymptote of \(H\) with positive gradient. The line \(l _ { 2 }\) is normal to \(C\) and parallel to the asymptote of \(H\) with negative gradient.
  2. Determine
    1. an equation for \(l _ { 1 }\)
    2. an equation for \(l _ { 2 }\) The lines \(l _ { 1 }\) and \(l _ { 2 }\) meet \(H\) at the points \(P\) and \(Q\) respectively.
  3. Find the area of the triangle \(O P Q\), where \(O\) is the origin.
Edexcel FP1 2021 June Q6
  1. The Taylor series expansion of \(f ( x )\) about \(x = a\) is given by
$$f ( x ) = f ( a ) + ( x - a ) f ^ { \prime } ( a ) + \frac { ( x - a ) ^ { 2 } } { 2 ! } f ^ { \prime \prime } ( a ) + \ldots + \frac { ( x - a ) ^ { r } } { r ! } f ^ { ( r ) } ( a ) + \ldots$$ Given that $$y = ( 1 + \ln x ) ^ { 2 } \quad x > 0$$
  1. show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 2 \ln x } { x ^ { 2 } }\)
  2. Hence find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\)
  3. Determine the Taylor series expansion about \(x = 1\) of $$( 1 + \ln x ) ^ { 2 }$$ in ascending powers of ( \(x - 1\) ), up to and including the term in \(( x - 1 ) ^ { 3 }\)
    Give each coefficient in simplest form.
  4. Use this series expansion to evaluate $$\lim _ { x \rightarrow 1 } \frac { 2 x - 1 - ( 1 + \ln x ) ^ { 2 } } { ( x - 1 ) ^ { 3 } }$$ explaining your reasoning clearly.
Edexcel FP1 2021 June Q7
  1. With respect to a fixed origin \(O\), the line \(l\) has equation
$$( \mathbf { r } - ( 12 \mathbf { i } + 16 \mathbf { j } - 8 \mathbf { k } ) ) \times ( 9 \mathbf { i } + 6 \mathbf { j } + 2 \mathbf { k } ) = \mathbf { 0 }$$ The point \(A\) lies on \(l\) such that the direction cosines of \(\overrightarrow { O A }\) with respect to the \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) axes are \(\frac { 3 } { 7 } , \beta\) and \(\gamma\). Determine the coordinates of the point \(A\).
Edexcel FP1 2021 June Q8
  1. A community is concerned about the rising level of pollutant in its local pond and applies a chemical treatment to stop the increase of pollutant.
The concentration, \(x\) parts per million (ppm), of the pollutant in the pond water \(t\) days after the chemical treatment was applied, is modelled by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 3 + \cosh t } { 3 x ^ { 2 } \cosh t } - \frac { 1 } { 3 } x \tanh t$$ When the chemical treatment was applied the concentration of pollutant was 3 ppm .
  1. Use the iteration formula $$\left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) _ { n } \approx \frac { \left( y _ { n + 1 } - y _ { n } \right) } { h }$$ once to estimate the concentration of the pollutant in the pond water 6 hours after the chemical treatment was applied.
  2. Show that the transformation \(u = x ^ { 3 }\) transforms the differential equation (I) into the differential equation $$\frac { \mathrm { d } u } { \mathrm {~d} t } + u \tanh t = 1 + \frac { 3 } { \cosh t }$$
  3. Determine the general solution of equation (II)
  4. Hence find an equation for the concentration of pollutant in the pond water \(t\) days after the chemical treatment was applied.
  5. Find the percentage error of the estimate found in part (a) compared to the value predicted by the model, stating if it is an overestimate or an underestimate.
Edexcel FP1 2022 June Q1
  1. An ellipse has equation \(\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1\) and eccentricity \(e _ { 1 }\) A hyperbola has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\) and eccentricity \(e _ { 2 }\)
Given that \(e _ { 1 } \times e _ { 2 } = 1\)
  1. show that \(a ^ { 2 } = 3 b ^ { 2 }\) Given also that the coordinates of the foci of the ellipse are the same as the coordinates of the foci of the hyperbola,
  2. determine the equation of the hyperbola.
Edexcel FP1 2022 June Q2
  1. During 2029, the number of hours of daylight per day in London, H, is modelled by the equation
$$H = 0.3 \sin \left( \frac { x } { 60 } \right) - 4 \cos \left( \frac { x } { 60 } \right) + 11.5 \quad 0 \leqslant x < 365$$ where \(x\) is the number of days after 1st January 2029 and the angle is in radians.
  1. Show that, according to the model, the number of hours of daylight in London on the 31st January 2029 will be 8.13 to 3 significant figures.
  2. Use the substitution \(t = \tan \left( \frac { x } { 120 } \right)\) to show that \(H\) can be written as $$H = \frac { a t ^ { 2 } + b t + c } { 1 + t ^ { 2 } }$$ where \(a\), \(b\) and \(c\) are constants to be determined.
  3. Hence determine, according to the model, the date of the first day of 2029 when there will be at least 12 hours of daylight in London.
Edexcel FP1 2022 June Q3
  1. With respect to a fixed origin \(O\), the points \(A\) and \(B\) have coordinates \(( 2,2 , - 1 )\) and ( \(4,2 p , 1\) ) respectively, where \(p\) is a constant.
For each of the following, determine the possible values of \(p\) for which,
  1. \(O B\) makes an angle of \(45 ^ { \circ }\) with the positive \(x\)-axis
  2. \(\overrightarrow { O A } \times \overrightarrow { O B }\) is parallel to \(\left( \begin{array} { r } 4
    - p
    2 \end{array} \right)\)
  3. the area of triangle \(O A B\) is \(3 \sqrt { 2 }\)
Edexcel FP1 2022 June Q4
  1. The velocity \(v \mathrm {~ms} ^ { - 1 }\), of a raindrop, \(t\) seconds after it falls from a cloud, is modelled by the differential equation
$$\frac { \mathrm { d } v } { \mathrm {~d} t } = - 0.1 v ^ { 2 } + 10 \quad t \geqslant 0$$ Initially the raindrop is at rest.
  1. Use two iterations of the approximation formula \(\left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) _ { n } \approx \frac { y _ { n + 1 } - y _ { n } } { h }\) to estimate the velocity of the raindrop 1 second after it falls from the cloud. Given that the initial acceleration of the raindrop is found to be smaller than is suggested by the current model,
  2. refine the model by changing the value of one constant.
Edexcel FP1 2022 June Q5
  1. The rectangular hyperbola \(H\) has equation \(x y = 36\)
    1. Use calculus to show that the equation of the tangent to \(H\) at the point \(P \left( 6 t , \frac { 6 } { t } \right)\) is
    $$y t ^ { 2 } + x = 12 t$$ The point \(Q \left( 12 t , \frac { 3 } { t } \right)\) also lies on \(H\).
  2. Find the equation of the tangent to \(H\) at the point \(Q\). The tangent at \(P\) and the tangent at \(Q\) meet at the point \(R\).
  3. Show that as \(t\) varies the locus of \(R\) is also a rectangular hyperbola.
Edexcel FP1 2022 June Q6
  1. The points \(P , Q\) and \(R\) have position vectors \(\left( \begin{array} { r } 1
    - 2
    4 \end{array} \right) , \left( \begin{array} { r } 3
    1
    - 5 \end{array} \right)\) and \(\left( \begin{array} { l } 2
    0
    3 \end{array} \right)\) respectively.
    1. Determine a vector equation of the plane that passes through the points \(P , Q\) and \(R\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), where \(\lambda\) and \(\mu\) are scalar parameters.
    2. Determine the coordinates of the point of intersection of the plane with the \(x\)-axis.
Edexcel FP1 2022 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7de3f581-eff1-4671-87a9-55ca1bb97890-20_591_962_312_548} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \left| x ^ { 2 } - 8 \right|\) and a sketch of the straight line with equation \(y = m x + c\), where \(m\) and \(c\) are positive constants. The equation $$\left| x ^ { 2 } - 8 \right| = m x + c$$ has exactly 3 roots, as shown in Figure 1.
  1. Show that $$m ^ { 2 } - 4 c + 32 = 0$$ Given that \(c = 3 m\)
  2. determine the value of \(m\) and the value of \(c\)
  3. Hence solve $$\left| x ^ { 2 } - 8 \right| \geqslant m x + c$$
Edexcel FP1 2022 June Q8
  1. The Taylor series expansion of \(f ( x )\) about \(x = a\) is given by
$$f ( x ) = f ( a ) + ( x - a ) f ^ { \prime } ( a ) + \frac { ( x - a ) ^ { 2 } } { 2 ! } f ^ { \prime \prime } ( a ) + \ldots + \frac { ( x - a ) ^ { r } } { r ! } f ^ { ( r ) } ( a ) + \ldots$$
  1. (a) Use differentiation to determine the Taylor series expansion of \(\ln x\), in ascending powers of ( \(x - 1\) ), up to and including the term in \(( x - 1 ) ^ { 2 }\)
    (b) Hence prove that $$\lim _ { x \rightarrow 1 } \left( \frac { \ln x } { x - 1 } \right) = 1$$
  2. Use L'Hospital's rule to determine $$\lim _ { x \rightarrow 0 } \left( \frac { 1 } { ( x + 3 ) \tan ( 6 x ) \operatorname { cosec } ( 2 x ) } \right)$$ (Solutions relying entirely on calculator technology are not acceptable.)
Edexcel FP1 2022 June Q9
  1. A particle \(P\) moves along a straight line.
At time \(t\) minutes, the displacement, \(x\) metres, of \(P\) from a fixed point \(O\) on the line is modelled by the differential equation $$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 x + 16 t ^ { 2 } x = 4 t ^ { 3 } \sin 2 t$$
  1. Show that the transformation \(x =\) ty transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 16 y = 4 \sin 2 t$$
  2. Hence find a general solution for the displacement of \(P\) from \(O\) at time \(t\) minutes.
Edexcel FP1 2024 June Q1
  1. (a) Given that
$$y = \ln \left( 3 + x ^ { 2 } \right)$$ complete the table with the value of \(y\) corresponding to \(x = 3\), giving your answer to 4 significant figures.
\(\boldsymbol { x }\)22.533.544.55
\(\boldsymbol { y }\)1.9462.2252.7252.9443.1463.332
In part (b) you must show all stages of your working. \section*{Solutions relying entirely on calculator technology are not acceptable.} (b) Use Simpson's rule with all the values of \(y\) in the completed table to estimate, to 3 significant figures, the value of $$\int _ { 2 } ^ { 5 } \ln \left( 3 + x ^ { 2 } \right) \mathrm { d } x$$ (c) Using your answer to part (b) and making your method clear, estimate the value of $$\int _ { 2 } ^ { 5 } \ln \sqrt { \left( 3 + x ^ { 2 } \right) } \mathrm { d } x$$
Edexcel FP1 2024 June Q2
  1. Use algebra to determine the values of \(x\) for which
$$\left| x ^ { 2 } - 2 x \right| \leqslant x$$