Edexcel FP1 2020 June — Question 8

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2020
SessionJune
TopicIntegration by Substitution

8. $$f ( x ) = \frac { 3 } { 13 + 6 \sin x - 5 \cos x }$$ Using the substitution \(t = \tan \left( \frac { x } { 2 } \right)\)
  1. show that \(\mathrm { f } ( x )\) can be written in the form $$\frac { 3 \left( 1 + t ^ { 2 } \right) } { 2 ( 3 t + 1 ) ^ { 2 } + 6 }$$
  2. Hence solve, for \(0 < x < 2 \pi\), the equation $$\mathrm { f } ( x ) = \frac { 3 } { 7 }$$ giving your answers to 2 decimal places where appropriate.
  3. Use the result of part (a) to show that $$\int _ { \frac { \pi } { 3 } } ^ { \frac { 4 \pi } { 3 } } f ( x ) d x = K \left( \arctan \left( \frac { \sqrt { 3 } - 9 } { 3 } \right) - \arctan \left( \frac { \sqrt { 3 } + 3 } { 3 } \right) + \pi \right)$$ where \(K\) is a constant to be determined.