Edexcel FP1 2021 June — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2021
SessionJune
TopicTaylor series
TypeTaylor series about x = 1

  1. The Taylor series expansion of \(f ( x )\) about \(x = a\) is given by
$$f ( x ) = f ( a ) + ( x - a ) f ^ { \prime } ( a ) + \frac { ( x - a ) ^ { 2 } } { 2 ! } f ^ { \prime \prime } ( a ) + \ldots + \frac { ( x - a ) ^ { r } } { r ! } f ^ { ( r ) } ( a ) + \ldots$$ Given that $$y = ( 1 + \ln x ) ^ { 2 } \quad x > 0$$
  1. show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 2 \ln x } { x ^ { 2 } }\)
  2. Hence find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\)
  3. Determine the Taylor series expansion about \(x = 1\) of $$( 1 + \ln x ) ^ { 2 }$$ in ascending powers of ( \(x - 1\) ), up to and including the term in \(( x - 1 ) ^ { 3 }\)
    Give each coefficient in simplest form.
  4. Use this series expansion to evaluate $$\lim _ { x \rightarrow 1 } \frac { 2 x - 1 - ( 1 + \ln x ) ^ { 2 } } { ( x - 1 ) ^ { 3 } }$$ explaining your reasoning clearly.