Edexcel FP1 2022 June — Question 9

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2022
SessionJune
TopicSecond order differential equations

  1. A particle \(P\) moves along a straight line.
At time \(t\) minutes, the displacement, \(x\) metres, of \(P\) from a fixed point \(O\) on the line is modelled by the differential equation $$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 x + 16 t ^ { 2 } x = 4 t ^ { 3 } \sin 2 t$$
  1. Show that the transformation \(x =\) ty transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 16 y = 4 \sin 2 t$$
  2. Hence find a general solution for the displacement of \(P\) from \(O\) at time \(t\) minutes.