Edexcel FP1 2021 June — Question 4

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2021
SessionJune
TopicVectors: Cross Product & Distances

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55803551-f13d-419f-8b51-31642bd20b6a-12_474_1063_264_502} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A small aircraft is landing in a field.
In a model for the landing the aircraft travels in different straight lines before and after it lands, as shown in Figure 2. The vector \(\mathbf { v } _ { \mathbf { A } }\) is in the direction of travel of the aircraft as it approaches the field.
The vector \(\mathbf { V } _ { \mathbf { L } }\) is in the direction of travel of the aircraft after it lands.
With respect to a fixed origin, the field is modelled as the plane with equation $$x - 2 y + 25 z = 0$$ and $$\mathbf { v } _ { \mathbf { A } } = \left( \begin{array} { r } 3
- 2
- 1 \end{array} \right)$$
  1. Write down a vector \(\mathbf { n }\) that is a normal vector to the field.
  2. Show that \(\mathbf { n } \times \mathbf { v } _ { \mathbf { A } } = \lambda \left( \begin{array} { r } 13
    19
    1 \end{array} \right)\), where \(\lambda\) is a constant to be determined. When the aircraft lands it remains in contact with the field and travels in the direction \(\mathbf { v } _ { \mathbf { L } }\) The vector \(\mathbf { v } _ { \mathbf { L } }\) is in the same plane as both \(\mathbf { v } _ { \mathbf { A } }\) and \(\mathbf { n }\) as shown in Figure 2.
  3. Determine a vector which has the same direction as \(\mathbf { V } _ { \mathbf { L } }\)
  4. State a limitation of the model.