Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2012 November Q11 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & 1 & - 1 & 4
3 & 4 & 6 & 1
- 1 & 2 & 8 & - 7 \end{array} \right)$$ The range space of T is \(R\). In any order,
  1. show that the dimension of \(R\) is 2 ,
  2. find a basis for \(R\) and obtain a cartesian equation for \(R\),
  3. find a basis for the null space of T . The vector \(\left( \begin{array} { l } 8
    7
    k \end{array} \right)\) belongs to \(R\). Find the value of \(k\) and, with this value of \(k\), find the general solution of $$\mathbf { M x } = \left( \begin{array} { l } 8
    7
    k \end{array} \right)$$
CAIE FP1 2012 November Q1
1 Show that \(\sum _ { r = n + 1 } ^ { 2 n } r ^ { 2 } = \frac { 1 } { 6 } n ( 2 n + 1 ) ( 7 n + 1 )\).
CAIE FP1 2012 November Q2
2 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} a x + y + 2 z & = 0
3 x - 2 y & = 4
3 x - 4 y - 6 a z & = 14 \end{aligned}$$ has a unique solution.
CAIE FP1 2012 November Q3
3 Let \(S _ { N } = \frac { 1 } { 2 ! } + \frac { 2 } { 3 ! } + \frac { 3 } { 4 ! } + \ldots + \frac { N } { ( N + 1 ) ! }\). Prove by mathematical induction that, for all positive integers \(N\), $$S _ { N } = 1 - \frac { 1 } { ( N + 1 ) ! }$$
CAIE FP1 2012 November Q4
4 The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } , 2 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }\) and \(2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k }\) respectively. Find \(\overrightarrow { A B } \times \overrightarrow { A C }\). Deduce, in either order, the exact value of
  1. the area of the triangle \(A B C\),
  2. the perpendicular distance from \(C\) to \(A B\).
CAIE FP1 2012 November Q5
5 The curve \(C\) has polar equation \(r = 1 + 2 \cos \theta\). Sketch the curve for \(- \frac { 2 } { 3 } \pi \leqslant \theta < \frac { 2 } { 3 } \pi\). Find the area bounded by \(C\) and the half-lines \(\theta = - \frac { 1 } { 3 } \pi , \theta = \frac { 1 } { 3 } \pi\).
CAIE FP1 2012 November Q6
6 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = \frac { 1 } { 4 } t ^ { 4 } - \ln t$$ for \(1 \leqslant t \leqslant 2\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(y\)-axis.
CAIE FP1 2012 November Q7
7 A cubic equation has roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 4
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 14
\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = 34 \end{aligned}$$ Find the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\). Show that the cubic equation is $$x ^ { 3 } - 4 x ^ { 2 } + x + 6 = 0$$ and solve this equation.
CAIE FP1 2012 November Q8
8 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$1 + z = 2 \cos \frac { 1 } { 2 } \theta \left( \cos \frac { 1 } { 2 } \theta + \mathrm { i } \sin \frac { 1 } { 2 } \theta \right)$$ By considering \(( 1 + z ) ^ { n }\), where \(n\) is a positive integer, deduce the sum of the series $$\binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \ldots + \binom { n } { n } \sin n \theta$$
CAIE FP1 2012 November Q9
9 The curve \(C\) has equation \(y = \frac { x ^ { 2 } - 3 x + 3 } { x - 2 }\). Find the equations of the asymptotes of \(C\). Show that there are no points on \(C\) for which \(- 1 < y < 3\). Find the coordinates of the turning points of \(C\). Sketch \(C\).
CAIE FP1 2012 November Q10
10 The curve \(C\) has equation \(x ^ { 3 } + y ^ { 3 } = 3 x y\), for \(x > 0\) and \(y > 0\). Find a relationship between \(x\) and \(y\) when \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\). Find the exact coordinates of the turning point of \(C\), and determine the nature of this turning point.
CAIE FP1 2012 November Q11
11 Show that \(\int x \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = - \frac { 1 } { 3 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } + c\), where \(c\) is a constant. Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), prove that, for \(n \geqslant 2\), $$( n + 2 ) I _ { n } = ( n - 1 ) I _ { n - 2 }$$ Use the substitution \(x = \sin u\) to show that $$\int _ { 0 } ^ { 1 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 1 } { 4 } \pi$$ Find \(I _ { 4 }\).
CAIE FP1 2012 November Q12 EITHER
The vector \(\mathbf { e }\) is an eigenvector of each of the \(n \times n\) matrices \(\mathbf { A }\) and \(\mathbf { B }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively. Prove that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with eigenvalue \(\lambda \mu\). It is given that the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 2 & 2
- 2 & - 2 & - 2
1 & 2 & 2 \end{array} \right) ,$$ has eigenvectors \(\left( \begin{array} { r } 0
1
- 1 \end{array} \right)\) and \(\left( \begin{array} { r } 1
0
- 1 \end{array} \right)\). Find the corresponding eigenvalues. Given that 2 is also an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector. The matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { r r r } - 1 & 2 & 2
2 & 2 & 2
- 3 & - 6 & - 6 \end{array} \right) ,$$ has the same eigenvectors as \(\mathbf { A }\). Given that \(\mathbf { A B } = \mathbf { C }\), find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { P } ^ { - 1 } \mathbf { C } ^ { 2 } \mathbf { P } = \mathbf { D }$$
CAIE FP1 2012 November Q12 OR
Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 75 \cos 2 t$$ Given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\), find \(x\) in terms of \(t\). Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx 5 \cos ( 2 t - \phi ) ,$$ where the constant \(\phi\) is such that \(\tan \phi = \frac { 4 } { 3 }\).
CAIE FP1 2013 November Q1
1 The curve \(C\) has polar equation \(r = 2 \mathrm { e } ^ { \theta }\), for \(\frac { 1 } { 6 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Find
  1. the area of the region bounded by the half-lines \(\theta = \frac { 1 } { 6 } \pi , \theta = \frac { 1 } { 2 } \pi\) and \(C\),
  2. the length of \(C\).
CAIE FP1 2013 November Q2
2 The cubic equation \(x ^ { 3 } - p x - q = 0\), where \(p\) and \(q\) are constants, has roots \(\alpha , \beta , \gamma\). Show that
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 2 p\),
  2. \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 3 q\),
  3. \(6 \left( \alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } \right) = 5 \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) \left( \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } \right)\).
CAIE FP1 2013 November Q3
3 It is given that $$S _ { n } = \sum _ { r = 1 } ^ { n } u _ { r } = 2 n ^ { 2 } + n$$ Write down the values of \(S _ { 1 } , S _ { 2 } , S _ { 3 } , S _ { 4 }\). Express \(u _ { r }\) in terms of \(r\), justifying your answer. Find $$\sum _ { r = n + 1 } ^ { 2 n } u _ { r } .$$
CAIE FP1 2013 November Q4
4 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } ( 1 + 2 x ) } \mathrm { d } x$$ Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 3 - n I _ { n - 1 }$$ Show that $$I _ { 3 } = \frac { 2 } { 35 } ( \sqrt { } 3 + 1 )$$
CAIE FP1 2013 November Q5
5 It is given that \(y = ( 1 + x ) ^ { 2 } \ln ( 1 + x )\). Find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\). Prove by mathematical induction that, for every integer \(n \geqslant 3\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { 2 ( n - 3 ) ! } { ( 1 + x ) ^ { n - 2 } }$$
CAIE FP1 2013 November Q6
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 3 & - 1 & 2
4 & - 10 & 0 & 2
1 & - 1 & 3 & - 4
5 & - 12 & 1 & 1 \end{array} \right)$$ Find, in either order, the rank of \(\mathbf { M }\) and a basis for the null space \(K\) of T . Evaluate $$\mathbf { M } \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right)$$ and hence show that every solution of $$\mathbf { M x } = \left( \begin{array} { r } 2
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).
CAIE FP1 2013 November Q7
7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
CAIE FP1 2013 November Q8
8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\).
CAIE FP1 2013 November Q10
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
CAIE FP1 2013 November Q16
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis. 11 Answer only one of the following two alternatives. \section*{EITHER} State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\). Simplify $$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$ Hence find the real factors of $$x ^ { 5 } - 1$$ Express the six roots of the equation $$x ^ { 6 } - x ^ { 3 } + 1 = 0$$ as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\). Hence find the real factors of $$x ^ { 6 } - x ^ { 3 } + 1$$ OR Given that $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$ and that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\).
CAIE FP1 2015 November Q1
1 The curve \(C\) is defined parametrically by $$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi .$$ Show that, at the point with parameter \(t\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$