16
10
22
\end{array} \right)$$
has the form
$$\mathbf { x } = \left( \begin{array} { r }
1
- 2
- 3
- 4
\end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 } ,$$
where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).
7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue.
Find the eigenvalues of the matrix \(\mathbf { B }\), where
$$\mathbf { B } = \left( \begin{array} { l l l }
1 & 3 & 0
2 & 0 & 2
1 & 1 & 2
\end{array} \right)$$
Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\).
The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\).
9 The curve \(C\) has parametric equations
$$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$
Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\).
10 The curve \(C\) has equation
$$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 } ,$$
where \(p\) is a positive constant and \(p \neq 3\).
- Obtain the equations of the asymptotes of \(C\).
- Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
- For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
11 Answer only one of the following two alternatives.
\section*{EITHER}
State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\).
Simplify
$$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$
Hence find the real factors of
$$x ^ { 5 } - 1$$
Express the six roots of the equation
$$x ^ { 6 } - x ^ { 3 } + 1 = 0$$
as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\).
Hence find the real factors of
$$x ^ { 6 } - x ^ { 3 } + 1$$
OR
Given that
$$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$
and that \(v = y ^ { 3 }\), show that
$$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$
Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\).