| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Reduction Formulae |
11 Show that \(\int x \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = - \frac { 1 } { 3 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } + c\), where \(c\) is a constant.
Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), prove that, for \(n \geqslant 2\),
$$( n + 2 ) I _ { n } = ( n - 1 ) I _ { n - 2 }$$
Use the substitution \(x = \sin u\) to show that
$$\int _ { 0 } ^ { 1 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 1 } { 4 } \pi$$
Find \(I _ { 4 }\).