CAIE FP1 2012 November — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionNovember
TopicComplex Numbers Arithmetic
TypeModulus-argument form conversions

8 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$1 + z = 2 \cos \frac { 1 } { 2 } \theta \left( \cos \frac { 1 } { 2 } \theta + \mathrm { i } \sin \frac { 1 } { 2 } \theta \right)$$ By considering \(( 1 + z ) ^ { n }\), where \(n\) is a positive integer, deduce the sum of the series $$\binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \ldots + \binom { n } { n } \sin n \theta$$