| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | November |
| Topic | Invariant lines and eigenvalues and vectors |
7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue.
Find the eigenvalues of the matrix \(\mathbf { B }\), where
$$\mathbf { B } = \left( \begin{array} { l l l }
1 & 3 & 0
2 & 0 & 2
1 & 1 & 2
\end{array} \right)$$
Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.