| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Second order differential equations |
Obtain the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 75 \cos 2 t$$
Given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\), find \(x\) in terms of \(t\).
Show that, for large positive values of \(t\) and for any initial conditions,
$$x \approx 5 \cos ( 2 t - \phi ) ,$$
where the constant \(\phi\) is such that \(\tan \phi = \frac { 4 } { 3 }\).