Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2008 June Q12 EITHER
Challenging +1.8
The position vectors of the points \(A , B , C , D\) are
\(7 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\),
\(3 \mathbf { i } + 5 \mathbf { j } - 2 \mathbf { k }\),
\(2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }\),
\(2 \mathbf { i } + 7 \mathbf { j } + \lambda \mathbf { k }\)
respectively. It is given that the shortest distance between the line \(A B\) and the line \(C D\) is 3 .
  1. Show that \(\lambda ^ { 2 } - 5 \lambda + 4 = 0\).
  2. Find the acute angle between the planes through \(A , B , D\) corresponding to the values of \(\lambda\) satisfying the equation in part (i).
CAIE FP1 2008 June Q12 OR
Challenging +1.8
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 2 & - 1 & - 1 \\ 1 & 3 & - 1 & 0 \\ 1 & 0 & 3 & 1 \\ 0 & 3 & - 4 & - 1 \end{array} \right) .$$ The range space of T is denoted by \(V\).
  1. Determine the dimension of \(V\).
  2. Show that the vectors \(\left( \begin{array} { l } 1 \\ 1 \\ 1 \\ 0 \end{array} \right) , \left( \begin{array} { l } 2 \\ 3 \\ 0 \\ 3 \end{array} \right) , \left( \begin{array} { r } - 1 \\ - 1 \\ 3 \\ - 4 \end{array} \right)\) are linearly independent.
  3. Write down a basis of \(V\). The set of elements of \(\mathbb { R } ^ { 4 }\) which do not belong to \(V\) is denoted by \(W\).
  4. State, with a reason, whether \(W\) is a vector space.
  5. Show that if the vector \(\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)\) belongs to \(W\) then \(y - z - t \neq 0\).
CAIE FP1 2009 June Q1
Standard +0.8
1 The equation $$x ^ { 4 } - x ^ { 3 } - 1 = 0$$ has roots \(\alpha , \beta , \gamma , \delta\). By using the substitution \(y = x ^ { 3 }\), or by any other method, find the exact value of \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } + \delta ^ { 6 }\).
CAIE FP1 2009 June Q2
Standard +0.8
2 Verify that, for all positive values of \(n\), $$\frac { 1 } { ( n + 2 ) ( 2 n + 3 ) } - \frac { 1 } { ( n + 3 ) ( 2 n + 5 ) } = \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) } .$$ For the series $$\sum _ { n = 1 } ^ { N } \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) }$$ find
  1. the sum to \(N\) terms,
  2. the sum to infinity.
CAIE FP1 2009 June Q3
Challenging +1.2
3 The equation of a curve is \(y = \lambda x ^ { 2 }\), where \(\lambda > 0\). The region bounded by the curve, the \(x\)-axis and the line \(x = a\), where \(a > 0\), is denoted by \(R\). The \(y\)-coordinate of the centroid of \(R\) is \(a\). Show that \(\lambda = \frac { 10 } { 3 a }\).
CAIE FP1 2009 June Q4
Standard +0.8
4 A curve has equation $$y = \frac { 1 } { 3 } x ^ { 3 } + 1$$ The length of the arc of the curve joining the point where \(x = 0\) to the point where \(x = 1\) is denoted by \(s\). Show that $$s = \int _ { 0 } ^ { 1 } \sqrt { } \left( 1 + x ^ { 4 } \right) \mathrm { d } x$$ The surface area generated when this arc is rotated through one complete revolution about the \(x\)-axis is denoted by \(S\). Show that $$S = \frac { 1 } { 9 } \pi ( 18 s + 2 \sqrt { } 2 - 1 )$$ [Do not attempt to evaluate \(s\) or \(S\).]
CAIE FP1 2009 June Q5
Standard +0.8
5 Draw a sketch of the curve \(C\) whose polar equation is \(r = \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). On the same diagram draw the line \(\theta = \alpha\), where \(0 < \alpha < \frac { 1 } { 2 } \pi\). The region bounded by \(C\) and the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(R\). Find the exact value of \(\alpha\) for which the line \(\theta = \alpha\) divides \(R\) into two regions of equal area.
CAIE FP1 2009 June Q6
Standard +0.8
6 A curve has equation $$( x + y ) \left( x ^ { 2 } + y ^ { 2 } \right) = 1$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,1 )\).
CAIE FP1 2009 June Q7
Challenging +1.2
7 Let $$I _ { n } = \int _ { 0 } ^ { 1 } t ^ { n } \mathrm { e } ^ { - t } \mathrm {~d} t$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = n I _ { n - 1 } - \mathrm { e } ^ { - 1 }$$ Hence prove by induction that, for all positive integers \(n\), $$I _ { n } < n ! .$$
CAIE FP1 2009 June Q8
Challenging +1.2
8 Find the general solution of the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 65 y = 65 x ^ { 2 } + 8 x + 73$$ Show that, whatever the initial conditions, \(\frac { y } { x ^ { 2 } } \rightarrow 1\) as \(x \rightarrow \infty\).
CAIE FP1 2009 June Q9
Standard +0.8
9 The matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & 4 \\ 1 & 5 & - 1 \\ 2 & 1 & 5 \end{array} \right)$$ has eigenvalues \(1,5,7\). Find a set of corresponding eigenvectors. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } ^ { - 1 }\).
[0pt] [The evaluation of \(\mathbf { P } ^ { - 1 }\) is not required.]
Determine the set of values of the real constant \(k\) such that \(k ^ { n } \mathbf { A } ^ { n }\) tends to the zero matrix as \(n \rightarrow \infty\).
CAIE FP1 2009 June Q10
Standard +0.8
10 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { x + \lambda }$$ where \(\lambda\) is a non-zero constant. Obtain the equation of each of the asymptotes of \(C\). In separate diagrams, sketch \(C\) for the cases \(\lambda > 0\) and \(\lambda < 0\). In both cases the coordinates of the turning points must be indicated.
CAIE FP1 2009 June Q11
Challenging +1.8
11 The line \(l _ { 1 }\) is parallel to the vector \(4 \mathbf { j } - \mathbf { k }\) and passes through the point \(A\) whose position vector is \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\). The variable line \(l _ { 2 }\) is parallel to the vector \(\mathbf { i } - ( 2 \sin t ) \mathbf { j }\), where \(0 \leqslant t < 2 \pi\), and passes through the point \(B\) whose position vector is \(\mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\), respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence find the values of \(t\) for which \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  3. For the case \(t = \frac { 1 } { 4 } \pi\), find the perpendicular distance from \(A\) to the plane \(B P Q\), giving your answer correct to 3 decimal places.
CAIE FP1 2009 June Q12 EITHER
Challenging +1.8
By considering \(\sum _ { k = 0 } ^ { n - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { k }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \cos k \theta \sec ^ { k } \theta = \cot \theta \sin n \theta \sec ^ { n } \theta$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\). Hence or otherwise show that $$\sum _ { k = 0 } ^ { n - 1 } 2 ^ { k } \cos \left( \frac { 1 } { 3 } k \pi \right) = \frac { 2 ^ { n } } { \sqrt { 3 } } \sin \left( \frac { 1 } { 3 } n \pi \right)$$ Given that \(0 < x < 1\), show that $$\sum _ { k = 0 } ^ { n - 1 } \frac { \cos \left( k \cos ^ { - 1 } x \right) } { x ^ { k } } = \frac { \sin \left( n \cos ^ { - 1 } x \right) } { x ^ { n - 1 } \sqrt { } \left( 1 - x ^ { 2 } \right) }$$
CAIE FP1 2009 June Q12 OR
Challenging +1.8
The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\), respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 2 \\ 1 & 4 & 7 & 8 \\ 1 & 7 & 11 & 13 \\ 1 & 2 & 5 & 5 \end{array} \right) , \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 2 & 0 & - 1 & - 1 \\ 5 & 1 & - 3 & - 3 \\ 3 & - 1 & - 1 & - 1 \\ 13 & - 1 & - 6 & - 6 \end{array} \right) .$$
  1. Find a basis for \(R _ { 1 }\), the range space of \(\mathrm { T } _ { 1 }\).
  2. Find a basis for \(K _ { 2 }\), the null space of \(\mathrm { T } _ { 2 }\), and hence show that \(K _ { 2 }\) is a subspace of \(R _ { 1 }\). The set of vectors which belong to \(R _ { 1 }\) but do not belong to \(K _ { 2 }\) is denoted by \(W\).
  3. State whether \(W\) is a vector space, justifying your answer. The linear transformation \(\mathrm { T } _ { 3 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is the result of applying \(\mathrm { T } _ { 1 }\) and then \(\mathrm { T } _ { 2 }\), in that order.
  4. Find the dimension of the null space of \(\mathrm { T } _ { 3 }\).
CAIE FP1 2010 June Q1
Standard +0.8
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
CAIE FP1 2010 June Q2
Standard +0.8
2 The curve \(C\) has polar equation $$r = a \left( 1 - \mathrm { e } ^ { - \theta } \right)$$ where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\).
  1. Draw a sketch of \(C\).
  2. Show that the area of the region bounded by \(C\) and the lines \(\theta = \ln 2\) and \(\theta = \ln 4\) is $$\frac { 1 } { 2 } a ^ { 2 } \left( \ln 2 - \frac { 13 } { 32 } \right)$$
CAIE FP1 2010 June Q3
Challenging +1.8
3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.
CAIE FP1 2010 June Q4
Challenging +1.2
4 The sum \(S _ { N }\) is defined by \(S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }\). Using the identity $$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$ find \(S _ { N }\) in terms of \(N\). [You need not simplify your result.] Hence find \(\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }\), for each of the two cases
  1. \(\lambda = 6\),
  2. \(\lambda > 6\).
CAIE FP1 2010 June Q5
Challenging +1.2
5 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ( \ln x ) ^ { n } \mathrm {~d} x$$ where \(n \geqslant 1\). Show that $$I _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } ( n + 1 ) I _ { n }$$ Hence prove by induction that, for all positive integers \(n , I _ { n }\) is of the form \(A _ { n } \mathrm { e } ^ { 2 } + B _ { n }\), where \(A _ { n }\) and \(B _ { n }\) are rational numbers.
CAIE FP1 2010 June Q6
Challenging +1.2
6 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Use the relation \(x = \sqrt { } y\) to show that the equation $$y ^ { 3 } + 2 y ^ { 2 } + y - 1 = 0$$ has roots \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\). Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  1. Write down the value of \(S _ { 2 }\) and show that \(S _ { 4 } = 2\).
  2. Find the values of \(S _ { 6 }\) and \(S _ { 8 }\).
CAIE FP1 2010 June Q7
Standard +0.8
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k } + \mu ( \mathbf { i } - \mathbf { j } - \mathbf { k } )$$ respectively.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Find the perpendicular distance from the point \(P\) whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 1 }\).
CAIE FP1 2010 June Q8
Standard +0.3
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1 \\ - 4 & - 1 & 4 \\ 0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1 \\ - 4 \\ - 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).
CAIE FP1 2010 June Q9
Standard +0.3
9
  1. Write down the five fifth roots of unity.
  2. Hence find all the roots of the equation $$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$ giving answers in the form \(r \mathrm { e } ^ { \mathrm { i } q \pi }\), where \(r > 0\) and \(q\) is a rational number. Show these roots on an Argand diagram. Let \(w\) be a root of the equation in part (ii).
  3. Show that $$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$
  4. Identify the root for which \(| 2 - w |\) is least.
CAIE FP1 2010 June Q10
Challenging +1.2
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x + 4 y + 12 z & = 5 \\ 2 x + a y + 12 z & = a - 1 \\ 3 x + 12 y + 2 a z & = 10 \end{aligned}$$ has a unique solution. Show that the system does not have any solution in the case \(a = 18\). Given that \(a = 8\), show that the number of solutions is infinite and find the solution for which \(x + y + z = 1\).