Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C3 2012 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3fbdfb55-5dd5-44ab-b031-d39e64bdfc3b-06_560_1145_210_386} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows part of the curve with equation \(y = \mathrm { f } ( x )\)
The curve passes through the points \(P ( - 1.5,0 )\) and \(Q ( 0,5 )\) as shown.
On separate diagrams, sketch the curve with equation
  1. \(y = | f ( x ) |\)
  2. \(y = \mathrm { f } ( | x | )\)
  3. \(y = 2 f ( 3 x )\) Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
Edexcel C3 2012 June Q5
  1. (a) Express \(4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta\) in terms of \(\sin \theta\) and \(\cos \theta\).
    (b) Hence show that
$$4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta = \sec ^ { 2 } \theta$$ (c) Hence or otherwise solve, for \(0 < \theta < \pi\), $$4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta = 4$$ giving your answers in terms of \(\pi\).
Edexcel C3 2012 June Q6
6. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto \mathrm { e } ^ { x } + 2 , \quad x \in \mathbb { R }
& \mathrm {~g} : x \mapsto \ln x , \quad x > 0 \end{aligned}$$
  1. State the range of f.
  2. Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.
  3. Find the exact value of \(x\) for which \(\mathrm { f } ( 2 x + 3 ) = 6\)
  4. Find \(\mathrm { f } ^ { - 1 }\), the inverse function of f , stating its domain.
  5. On the same axes sketch the curves with equation \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), giving the coordinates of all the points where the curves cross the axes.
Edexcel C3 2012 June Q7
  1. Differentiate with respect to \(x\),
    1. \(x ^ { \frac { 1 } { 2 } } \ln ( 3 x )\)
    2. \(\frac { 1 - 10 x } { ( 2 x - 1 ) ^ { 5 } }\), giving your answer in its simplest form.
  2. Given that \(x = 3 \tan 2 y\) find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
Edexcel C3 2013 June Q1
  1. Express
$$\frac { 3 x + 5 } { x ^ { 2 } + x - 12 } - \frac { 2 } { x - 3 }$$ as a single fraction in its simplest form.
Edexcel C3 2013 June Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-03_499_1099_210_443} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x > 0\), where f is an increasing function of \(x\). The curve crosses the \(x\)-axis at the point \(( 1,0 )\) and the line \(x = 0\) is an asymptote to the curve. On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( 2 x ) , x > 0\)
  2. \(y = | \mathrm { f } ( x ) | , x > 0\) Indicate clearly on each sketch the coordinates of the point at which the curve crosses or meets the \(x\)-axis.
Edexcel C3 2013 June Q3
3. $$f ( x ) = 7 \cos x + \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to one decimal place.
  2. Hence solve the equation $$7 \cos x + \sin x = 5$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
  3. State the values of \(k\) for which the equation $$7 \cos x + \sin x = k$$ has only one solution in the interval \(0 \leqslant x < 360 ^ { \circ }\)
Edexcel C3 2013 June Q4
  1. The functions f and g are defined by
$$\begin{array} { l l } \mathrm { f } : x \mapsto 2 | x | + 3 , & x \in \mathbb { R } ,
\mathrm {~g} : x \mapsto 3 - 4 x , & x \in \mathbb { R } \end{array}$$
  1. State the range of f.
  2. Find \(\mathrm { fg } ( 1 )\).
  3. Find \(\mathrm { g } ^ { - 1 }\), the inverse function of g .
  4. Solve the equation $$\operatorname { gg } ( x ) + [ \mathrm { g } ( x ) ] ^ { 2 } = 0$$
Edexcel C3 2013 June Q5
5. (a) Differentiate $$\frac { \cos 2 x } { \sqrt { x } }$$ with respect to \(x\).
(b) Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \sec ^ { 2 } 3 x \right)\) can be written in the form $$\mu \left( \tan 3 x + \tan ^ { 3 } 3 x \right)$$ where \(\mu\) is a constant.
(c) Given \(x = 2 \sin \left( \frac { y } { 3 } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\), simplifying your answer.
Edexcel C3 2013 June Q6
  1. (i) Use an appropriate double angle formula to show that
$$\operatorname { cosec } 2 x = \lambda \operatorname { cosec } x \sec x$$ and state the value of the constant \(\lambda\).
(ii) Solve, for \(0 \leqslant \theta < 2 \pi\), the equation $$3 \sec ^ { 2 } \theta + 3 \sec \theta = 2 \tan ^ { 2 } \theta$$ You must show all your working. Give your answers in terms of \(\pi\).
Edexcel C3 2013 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-11_481_858_228_552} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \left( x ^ { 2 } + 3 x + 1 \right) \mathrm { e } ^ { x ^ { 2 } }$$ The curve cuts the \(x\)-axis at points \(A\) and \(B\) as shown in Figure 2 .
  1. Calculate the \(x\) coordinate of \(A\) and the \(x\) coordinate of \(B\), giving your answers to 3 decimal places.
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). The curve has a minimum turning point at the point \(P\) as shown in Figure 2.
  3. Show that the \(x\) coordinate of \(P\) is the solution of $$x = - \frac { 3 \left( 2 x ^ { 2 } + 1 \right) } { 2 \left( x ^ { 2 } + 2 \right) }$$
  4. Use the iteration formula $$x _ { n + 1 } = - \frac { 3 \left( 2 x _ { n } ^ { 2 } + 1 \right) } { 2 \left( x _ { n } ^ { 2 } + 2 \right) } , \quad \text { with } x _ { 0 } = - 2.4$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places. The \(x\) coordinate of \(P\) is \(\alpha\).
  5. By choosing a suitable interval, prove that \(\alpha = - 2.43\) to 2 decimal places.
Edexcel C3 2013 June Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-13_721_1227_116_322} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The population of a town is being studied. The population \(P\), at time \(t\) years from the start of the study, is assumed to be $$P = \frac { 8000 } { 1 + 7 \mathrm { e } ^ { - k t } } , \quad t \geqslant 0$$ where \(k\) is a positive constant.
The graph of \(P\) against \(t\) is shown in Figure 3. Use the given equation to
  1. find the population at the start of the study,
  2. find a value for the expected upper limit of the population. Given also that the population reaches 2500 at 3 years from the start of the study,
  3. calculate the value of \(k\) to 3 decimal places. Using this value for \(k\),
  4. find the population at 10 years from the start of the study, giving your answer to 3 significant figures.
  5. Find, using \(\frac { \mathrm { d } P } { \mathrm {~d} t }\), the rate at which the population is growing at 10 years from the start of the study.
Edexcel C3 2013 June Q1
1. $$g ( x ) = \frac { 6 x + 12 } { x ^ { 2 } + 3 x + 2 } - 2 , \quad x \geqslant 0$$
  1. Show that \(\mathrm { g } ( x ) = \frac { 4 - 2 x } { x + 1 } , x \geqslant 0\)
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-02_494_922_628_511} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { g } ( x ) , x \geqslant 0\) The curve meets the \(y\)-axis at \(( 0,4 )\) and crosses the \(x\)-axis at \(( 2,0 )\). On separate diagrams sketch the graph with equation
    1. \(y = 2 \mathrm {~g} ( 2 x )\),
    2. \(y = \mathrm { g } ^ { - 1 } ( x )\). Show on each sketch the coordinates of each point at which the graph meets or crosses the axes.
Edexcel C3 2013 June Q2
2. Given that \(\tan 40 ^ { \circ } = p\), find in terms of \(p\)
  1. \(\cot 40 ^ { \circ }\)
  2. \(\sec 40 ^ { \circ }\)
  3. \(\tan 85 ^ { \circ }\)
Edexcel C3 2013 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-05_654_967_244_507} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph with equation \(y = 2 | x | - 5\).
The graph intersects the positive \(x\)-axis at the point \(P\) and the negative \(y\)-axis at the point \(Q\).
  1. State the coordinates of \(P\) and the coordinates of \(Q\).
  2. Solve the equation $$2 | x | - 5 = 3 - x$$
Edexcel C3 2013 June Q4
  1. (a) On the same diagram, sketch and clearly label the graphs with equations
$$y = \mathrm { e } ^ { x } \quad \text { and } \quad y = 10 - x$$ Show on your sketch the coordinates of each point at which the graphs cut the axes.
(b) Explain why the equation \(\mathrm { e } ^ { x } - 10 + x = 0\) has only one solution.
(c) Show that the solution of the equation $$\mathrm { e } ^ { x } - 10 + x = 0$$ lies between \(x = 2\) and \(x = 3\)
(d) Use the iterative formula $$x _ { n + 1 } = \ln \left( 10 - x _ { n } \right) , \quad x _ { 1 } = 2$$ to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
Give your answers to 4 decimal places.
Edexcel C3 2013 June Q5
  1. (i) (a) Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x ^ { \frac { 1 } { 2 } } \ln x \right) = \frac { \ln x } { 2 \sqrt { } x } + \frac { 1 } { \sqrt { } x }\)
The curve with equation \(y = x ^ { \frac { 1 } { 2 } } \ln x , x > 0\) has one turning point at the point \(P\).
(b) Find the exact coordinates of \(P\). Give your answer in its simplest form.
(ii) A curve \(C\) has equation \(y = \frac { x - k } { x + k }\), where \(k\) is a positive constant. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), and show that \(C\) has no turning points.
Edexcel C3 2013 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-10_775_1392_233_278} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the graph of \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \left\{ \begin{array} { r r } 5 - 2 x , & x \leqslant 4
\mathrm { e } ^ { 2 x - 8 } - 4 , & x > 4 \end{array} \right.$$
  1. State the range of \(\mathrm { f } ( x )\).
  2. Determine the exact value of ff(0).
  3. Solve \(\mathrm { f } ( x ) = 21\) Give each answer as an exact answer.
  4. Explain why the function f does not have an inverse.
Edexcel C3 2013 June Q7
7. (a) Prove that $$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 2 \sec x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Hence find, for \(0 < x < \frac { \pi } { 4 }\), the exact solution of $$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 8 \sin x$$
Edexcel C3 2013 June Q8
8. (a) Express \(9 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\) to 4 decimal places.
(b) (i) State the maximum value of \(9 \cos \theta - 2 \sin \theta\)
(ii) Find the value of \(\theta\), for \(0 < \theta < 2 \pi\), at which this maximum occurs. Ruth models the height \(H\) above the ground of a passenger on a Ferris wheel by the equation $$H = 10 - 9 \cos \left( \frac { \pi t } { 5 } \right) + 2 \sin \left( \frac { \pi t } { 5 } \right)$$ where \(H\) is measured in metres and \(t\) is the time in minutes after the wheel starts turning.
\includegraphics[max width=\textwidth, alt={}, center]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-14_572_458_719_1158}
(c) Calculate the maximum value of \(H\) predicted by this model, and the value of \(t\), when this maximum first occurs. Give your answers to 2 decimal places.
(d) Determine the time for the Ferris wheel to complete two revolutions.
Edexcel C3 2013 June Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-16_570_903_237_534} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation \(x = \left( 9 + 16 y - 2 y ^ { 2 } \right) ^ { \frac { 1 } { 2 } }\).
The curve crosses the \(x\)-axis at the point \(A\).
  1. State the coordinates of \(A\).
  2. Find an expression for \(\frac { \mathrm { d } x } { \mathrm {~d} y }\), in terms of \(y\).
  3. Find an equation of the tangent to the curve at \(A\).
Edexcel C3 2013 June Q1
  1. Given that
$$\frac { 3 x ^ { 4 } - 2 x ^ { 3 } - 5 x ^ { 2 } - 4 } { x ^ { 2 } - 4 } \equiv a x ^ { 2 } + b x + c + \frac { d x + e } { x ^ { 2 } - 4 } , \quad x \neq \pm 2$$ find the values of the constants \(a , b , c , d\) and \(e\).
(4)
Edexcel C3 2013 June Q2
2. Given that $$\mathrm { f } ( x ) = \ln x , \quad x > 0$$ sketch on separate axes the graphs of
  1. \(\quad y = \mathrm { f } ( x )\),
  2. \(y = | \mathrm { f } ( x ) |\),
  3. \(y = - \mathrm { f } ( x - 4 )\). Show, on each diagram, the point where the graph meets or crosses the \(x\)-axis. In each case, state the equation of the asymptote.
Edexcel C3 2013 June Q3
3. Given that $$2 \cos ( x + 50 ) ^ { \circ } = \sin ( x + 40 ) ^ { \circ }$$
  1. Show, without using a calculator, that $$\tan x ^ { \circ } = \frac { 1 } { 3 } \tan 40 ^ { \circ }$$
  2. Hence solve, for \(0 \leqslant \theta < 360\), $$2 \cos ( 2 \theta + 50 ) ^ { \circ } = \sin ( 2 \theta + 40 ) ^ { \circ }$$ giving your answers to 1 decimal place.
Edexcel C3 2013 June Q4
4. $$\mathrm { f } ( x ) = 25 x ^ { 2 } \mathrm { e } ^ { 2 x } - 16 , \quad x \in \mathbb { R }$$
  1. Using calculus, find the exact coordinates of the turning points on the curve with equation \(y = \mathrm { f } ( x )\).
  2. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as \(x = \pm \frac { 4 } { 5 } \mathrm { e } ^ { - x }\) The equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\), where \(\alpha = 0.5\) to 1 decimal place.
  3. Starting with \(x _ { 0 } = 0.5\), use the iteration formula $$x _ { n + 1 } = \frac { 4 } { 5 } \mathrm { e } ^ { - x _ { n } }$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
  4. Give an accurate estimate for \(\alpha\) to 2 decimal places, and justify your answer.