Edexcel C3 2013 June — Question 1

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2013
SessionJune
TopicComposite & Inverse Functions

1. $$g ( x ) = \frac { 6 x + 12 } { x ^ { 2 } + 3 x + 2 } - 2 , \quad x \geqslant 0$$
  1. Show that \(\mathrm { g } ( x ) = \frac { 4 - 2 x } { x + 1 } , x \geqslant 0\)
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-02_494_922_628_511} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { g } ( x ) , x \geqslant 0\) The curve meets the \(y\)-axis at \(( 0,4 )\) and crosses the \(x\)-axis at \(( 2,0 )\). On separate diagrams sketch the graph with equation
    1. \(y = 2 \mathrm {~g} ( 2 x )\),
    2. \(y = \mathrm { g } ^ { - 1 } ( x )\). Show on each sketch the coordinates of each point at which the graph meets or crosses the axes.