| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2013 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
7. (a) Prove that
$$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 2 \sec x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , \quad n \in \mathbb { Z }$$
(b) Hence find, for \(0 < x < \frac { \pi } { 4 }\), the exact solution of
$$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 8 \sin x$$