- (a) Express \(4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta\) in terms of \(\sin \theta\) and \(\cos \theta\).
(b) Hence show that
$$4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta = \sec ^ { 2 } \theta$$
(c) Hence or otherwise solve, for \(0 < \theta < \pi\),
$$4 \operatorname { cosec } ^ { 2 } 2 \theta - \operatorname { cosec } ^ { 2 } \theta = 4$$
giving your answers in terms of \(\pi\).