Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA C3 2006 January Q3
3
    1. Given that \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x\), find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Hence, or otherwise, find \(\int \frac { 2 x ^ { 3 } + 1 } { x ^ { 4 } + 2 x } \mathrm {~d} x\).
    1. Use the substitution \(u = 2 x + 1\) to show that $$\int x \sqrt { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } \int \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$
    2. Hence show that \(\int _ { 0 } ^ { 4 } x \sqrt { 2 x + 1 } \mathrm {~d} x = 19.9\) correct to three significant figures.
AQA C3 2006 January Q4
4 It is given that \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\).
  1. Show that the equation \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\) can be written in the form $$2 \cot ^ { 2 } x + 5 \cot x - 3 = 0$$
  2. Hence show that \(\tan x = 2\) or \(\tan x = - \frac { 1 } { 3 }\).
  3. Hence, or otherwise, solve the equation \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\), giving all values of \(x\) in radians to one decimal place in the interval \(- \pi < x \leqslant \pi\).
AQA C3 2006 January Q5
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at \(( 0 , a )\) and \(( b , 0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-03_826_924_477_541}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
AQA C3 2006 January Q6
6 [Figure 1, printed on the insert, is provided for use in this question.]
The curve \(y = x ^ { 3 } + 4 x - 3\) intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1.0.
  2. Show that the equation \(x ^ { 3 } + 4 x - 3 = 0\) can be rearranged into the form \(x = \frac { 3 - x ^ { 3 } } { 4 }\).
    (1 mark)
    1. Use the iteration \(x _ { n + 1 } = \frac { 3 - x _ { n } { } ^ { 3 } } { 4 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to two decimal places.
      (3 marks)
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 3 - x ^ { 3 } } { 4 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      (3 marks)
AQA C3 2006 January Q7
7
  1. The sketch shows the graph of \(y = \sin ^ { - 1 } x\).
    \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-05_835_834_447_587} Write down the coordinates of the points \(P\) and \(Q\), the end-points of the graph.
  2. Sketch the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
AQA C3 2006 January Q8
8 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x + 2 } & \text { for real values of } x , x \neq - 2 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 4\).
    1. Explain why the function f does not have an inverse.
    2. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
AQA C3 2006 January Q9
9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\).
    \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-06_604_1045_687_536}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$
AQA C3 2009 January Q1
1 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to \(\int _ { 1 } ^ { 9 } \frac { 1 } { 1 + \sqrt { x } } \mathrm {~d} x\), giving your answer to three significant figures.
AQA C3 2009 January Q2
2 The diagram shows the curve with equation \(y = \sqrt { ( x - 2 ) ^ { 5 } }\) for \(x \geqslant 2\).
\includegraphics[max width=\textwidth, alt={}, center]{59b896ae-60ce-49ea-9c70-0f76fc5fffae-2_885_1125_854_461} The shaded region \(R\) is bounded by the curve \(y = \sqrt { ( x - 2 ) ^ { 5 } }\), the \(x\)-axis and the lines \(x = 3\) and \(x = 4\). Find the exact value of the volume of the solid formed when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
AQA C3 2009 January Q3
3 [Figure 1, printed on the insert, is provided for use in this question.]
The curve with equation \(y = x ^ { 3 } + 5 x - 4\) intersects the \(x\)-axis at the point \(A\), where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1 .
  2. Show that the equation \(x ^ { 3 } + 5 x - 4 = 0\) can be rearranged into the form $$x = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)$$
  3. Use the iteration \(x _ { n + 1 } = \frac { 1 } { 5 } \left( 4 - x _ { n } { } ^ { 3 } \right)\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to three decimal places.
  4. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
AQA C3 2009 January Q4
4
  1. Solve the equation \(\sec x = \frac { 3 } { 2 }\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
  2. By using a suitable trigonometrical identity, solve the equation $$2 \tan ^ { 2 } x = 10 - 5 \sec x$$ giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
AQA C3 2009 January Q5
5 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = 2 - x ^ { 4 } & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x - 4 } & \text { for real values of } x , x \neq 4 \end{array}$$
  1. State the range of f .
  2. Explain why the function f does not have an inverse.
    1. Write down an expression for fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = - 14\).
AQA C3 2009 January Q6
6 A curve has equation \(y = \mathrm { e } ^ { 2 x } \left( x ^ { 2 } - 4 x - 2 \right)\).
  1. Find the value of the \(x\)-coordinate of each of the stationary points of the curve.
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. Determine the nature of each of the stationary points of the curve.
AQA C3 2009 January Q7
7
  1. Given that \(3 \mathrm { e } ^ { x } = 4\), find the exact value of \(x\).
    1. By substituting \(y = \mathrm { e } ^ { x }\), show that the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\) can be written as \(3 y ^ { 2 } - 19 y + 20 = 0\).
    2. Hence solve the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\), giving your answers as exact values. (3 marks)
AQA C3 2009 January Q8
8 The sketch shows the graph of \(y = \cos ^ { - 1 } x\).
\includegraphics[max width=\textwidth, alt={}, center]{59b896ae-60ce-49ea-9c70-0f76fc5fffae-5_593_686_383_683}
  1. Write down the coordinates of \(P\) and \(Q\), the end points of the graph.
  2. Describe a sequence of two geometrical transformations that maps the graph of \(y = \cos ^ { - 1 } x\) onto the graph of \(y = 2 \cos ^ { - 1 } ( x - 1 )\).
  3. Sketch the graph of \(y = 2 \cos ^ { - 1 } ( x - 1 )\).
    1. Write the equation \(y = 2 \cos ^ { - 1 } ( x - 1 )\) in the form \(x = \mathrm { f } ( y )\).
    2. Hence find the value of \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) when \(y = 2\).
AQA C3 2009 January Q9
9
  1. Given that \(y = \frac { 4 x } { 4 x - 3 }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { ( 4 x - 3 ) ^ { 2 } }\), where \(k\) is an integer.
    1. Given that \(y = x \ln ( 4 x - 3 )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Find an equation of the tangent to the curve \(y = x \ln ( 4 x - 3 )\) at the point where \(x = 1\).
    1. Use the substitution \(u = 4 x - 3\) to find \(\int \frac { 4 x } { 4 x - 3 } \mathrm {~d} x\), giving your answer in terms of \(x\).
    2. By using integration by parts, or otherwise, find \(\int \ln ( 4 x - 3 ) \mathrm { d } x\).
AQA C3 2010 January Q1
1 A curve has equation \(y = \mathrm { e } ^ { - 4 x } \left( x ^ { 2 } + 2 x - 2 \right)\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \mathrm { e } ^ { - 4 x } \left( 5 - 3 x - 2 x ^ { 2 } \right)\).
  2. Find the exact values of the coordinates of the stationary points of the curve.
AQA C3 2010 January Q2
2 [Figure 1, printed on the insert, is provided for use in this question.]
    1. Sketch the graph of \(y = \sin ^ { - 1 } x\), where \(y\) is in radians. State the coordinates of the end points of the graph.
    2. By drawing a suitable straight line on your sketch, show that the equation $$\sin ^ { - 1 } x = \frac { 1 } { 4 } x + 1$$ has only one solution.
  1. The root of the equation \(\sin ^ { - 1 } x = \frac { 1 } { 4 } x + 1\) is \(\alpha\). Show that \(0.5 < \alpha < 1\).
  2. The equation \(\sin ^ { - 1 } x = \frac { 1 } { 4 } x + 1\) can be rewritten as \(x = \sin \left( \frac { 1 } { 4 } x + 1 \right)\).
    1. Use the iteration \(x _ { n + 1 } = \sin \left( \frac { 1 } { 4 } x _ { n } + 1 \right)\) with \(x _ { 1 } = 0.5\) to find the values of \(x _ { 2 }\) and \(x _ { 3 }\), giving your answers to three decimal places.
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \sin \left( \frac { 1 } { 4 } x + 1 \right)\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
AQA C3 2010 January Q3
3
  1. Solve the equation $$\operatorname { cosec } x = 3$$ giving all values of \(x\) in radians to two decimal places, in the interval \(0 \leqslant x \leqslant 2 \pi\).
    (2 marks)
  2. By using a suitable trigonometric identity, solve the equation $$\cot ^ { 2 } x = 11 - \operatorname { cosec } x$$ giving all values of \(x\) in radians to two decimal places, in the interval \(0 \leqslant x \leqslant 2 \pi\).
    (6 marks)
AQA C3 2010 January Q4
4
  1. Sketch the graph of \(y = | 8 - 2 x |\).
  2. Solve the equation \(| 8 - 2 x | = 4\).
  3. Solve the inequality \(| 8 - 2 x | > 4\).
AQA C3 2010 January Q5
5
  1. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0 } ^ { 12 } \ln \left( x ^ { 2 } + 5 \right) \mathrm { d } x\), giving your answer to three significant figures.
  2. A curve has equation \(y = \ln \left( x ^ { 2 } + 5 \right)\).
    1. Show that this equation can be rewritten as \(x ^ { 2 } = \mathrm { e } ^ { y } - 5\).
    2. The region bounded by the curve, the lines \(y = 5\) and \(y = 10\) and the \(y\)-axis is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find the exact value of the volume of the solid generated.
  3. The graph with equation \(y = \ln \left( x ^ { 2 } + 5 \right)\) is stretched with scale factor 4 parallel to the \(x\)-axis, and then translated through \(\left[ \begin{array} { l } 0
    3 \end{array} \right]\) to give the graph with equation \(y = \mathrm { f } ( x )\). Write down an expression for \(\mathrm { f } ( x )\).
AQA C3 2010 January Q6
6 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } - 3 , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { 3 x + 4 } , & \text { for real values of } x , x \neq - \frac { 4 } { 3 } \end{array}$$
  1. Find the range of \(f\).
  2. The inverse of f is \(\mathrm { f } ^ { - 1 }\).
    1. Find \(\mathrm { f } ^ { - 1 } ( x )\).
    2. Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 0\).
    1. Find an expression for \(\operatorname { gf } ( x )\).
    2. Solve the equation \(\mathrm { gf } ( x ) = 1\), giving your answer in an exact form.
AQA C3 2010 January Q7
7 It is given that \(y = \tan 4 x\).
  1. By writing \(\tan 4 x\) as \(\frac { \sin 4 x } { \cos 4 x }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = p \left( 1 + \tan ^ { 2 } 4 x \right)\), where \(p\) is a number to be determined.
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = q y \left( 1 + y ^ { 2 } \right)\), where \(q\) is a number to be determined.
AQA C3 2010 January Q8
8
  1. Using integration by parts, find \(\int x \sin ( 2 x - 1 ) \mathrm { d } x\).
  2. Use the substitution \(u = 2 x - 1\) to find \(\int \frac { x ^ { 2 } } { 2 x - 1 } \mathrm {~d} x\), giving your answer in terms of \(x\).
    (6 marks)
AQA C3 2007 June Q1
1
  1. Differentiate \(\ln x\) with respect to \(x\).
  2. Given that \(y = ( x + 1 ) \ln x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  3. Find an equation of the normal to the curve \(y = ( x + 1 ) \ln x\) at the point where \(x = 1\).