AQA C3 2006 January — Question 9

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2006
SessionJanuary
TopicIntegration by Parts

9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\).
    \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-06_604_1045_687_536}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$