Given that \(y = \frac { 4 x } { 4 x - 3 }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { ( 4 x - 3 ) ^ { 2 } }\), where \(k\) is an integer.
Given that \(y = x \ln ( 4 x - 3 )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Find an equation of the tangent to the curve \(y = x \ln ( 4 x - 3 )\) at the point where \(x = 1\).
Use the substitution \(u = 4 x - 3\) to find \(\int \frac { 4 x } { 4 x - 3 } \mathrm {~d} x\), giving your answer in terms of \(x\).
By using integration by parts, or otherwise, find \(\int \ln ( 4 x - 3 ) \mathrm { d } x\).