AQA C3 2006 January — Question 3

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2006
SessionJanuary
TopicIntegration by Substitution

3
    1. Given that \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x\), find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Hence, or otherwise, find \(\int \frac { 2 x ^ { 3 } + 1 } { x ^ { 4 } + 2 x } \mathrm {~d} x\).
    1. Use the substitution \(u = 2 x + 1\) to show that $$\int x \sqrt { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } \int \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$
    2. Hence show that \(\int _ { 0 } ^ { 4 } x \sqrt { 2 x + 1 } \mathrm {~d} x = 19.9\) correct to three significant figures.