A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Integration by Substitution
Q3
AQA C3 2006 January — Question 3
Exam Board
AQA
Module
C3 (Core Mathematics 3)
Year
2006
Session
January
Topic
Integration by Substitution
3
Given that \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x\), find \(\mathrm { f } ^ { \prime } ( x )\).
Hence, or otherwise, find \(\int \frac { 2 x ^ { 3 } + 1 } { x ^ { 4 } + 2 x } \mathrm {~d} x\).
Use the substitution \(u = 2 x + 1\) to show that $$\int x \sqrt { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } \int \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$
Hence show that \(\int _ { 0 } ^ { 4 } x \sqrt { 2 x + 1 } \mathrm {~d} x = 19.9\) correct to three significant figures.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9