Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C3 2016 June Q1
1 Find the equation of the tangent to the curve $$y = 3 x ^ { 2 } ( x + 2 ) ^ { 6 }$$ at the point \(( - 1,3 )\), giving your answer in the form \(y = m x + c\).
OCR C3 2016 June Q2
2 Find
  1. \(\int \left( 2 - \frac { 1 } { x } \right) ^ { 2 } \mathrm {~d} x\),
  2. \(\int ( 4 x + 1 ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x\).
OCR C3 2016 June Q3
3 The mass of a substance is decreasing exponentially. Its mass is \(m\) grams at time \(t\) years. The following table shows certain values of \(t\) and \(m\).
\(t\)051025
\(m\)200160
  1. Find the values missing from the table.
  2. Determine the value of \(t\), correct to the nearest integer, for which the mass is 50 grams.
OCR C3 2016 June Q4
4 It is given that \(A\) and \(B\) are angles such that $$\sec ^ { 2 } A - \tan A = 13 \quad \text { and } \quad \sin B \sec ^ { 2 } B = 27 \cos B \operatorname { cosec } ^ { 2 } B$$ Find the possible exact values of \(\tan ( A - B )\).
OCR C3 2016 June Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{6d15cb4d-f540-488b-b94e-7a494f192ba5-2_469_721_1932_662} The diagram shows the curves \(y = \mathrm { e } ^ { 2 x }\) and \(y = 8 \mathrm { e } ^ { - x }\). The shaded region is bounded by the curves and the \(y\)-axis. Without using a calculator,
  1. solve an appropriate equation to show that the curves intersect at a point for which \(x = \ln 2\),
  2. find the area of the shaded region, giving your answer in simplified form.
OCR C3 2016 June Q6
6 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$y = \ln ( 4 x - 7 ) + 18 \quad \text { and } \quad y = a \left( x ^ { 2 } + b \right) ^ { \frac { 1 } { 2 } }$$ respectively, where \(a\) and \(b\) are positive constants. The point \(P\) lies on both curves and has \(x\)-coordinate 2 . It is given that the gradient of \(C _ { 1 }\) at \(P\) is equal to the gradient of \(C _ { 2 }\) at \(P\). Find the values of \(a\) and \(b\).
OCR C3 2016 June Q7
7
  1. By sketching the curves \(y = x ( 2 x + 5 )\) and \(y = \cos ^ { - 1 } x\) (where \(y\) is in radians) in a single diagram, show that the equation \(x ( 2 x + 5 ) = \cos ^ { - 1 } x\) has exactly one real root.
  2. Use the iterative formula $$x _ { n + 1 } = \frac { \cos ^ { - 1 } x _ { n } } { 2 x _ { n } + 5 } \text { with } x _ { 1 } = 0.25$$ to find the root correct to 3 significant figures. Show the result of each iteration correct to at least 4 significant figures.
  3. Two new curves are obtained by transforming each of the curves \(y = x ( 2 x + 5 )\) and \(y = \cos ^ { - 1 } x\) by the pair of transformations:
    reflection in the \(x\)-axis followed by reflection in the \(y\)-axis.
    State an equation of each of the new curves and determine the coordinates of their point of intersection, giving each coordinate correct to 3 significant figures.
OCR C3 2016 June Q8
8 The functions f and g are defined for all real values of \(x\) by $$\mathrm { f } ( x ) = | 2 x + a | + 3 a \quad \text { and } \quad \mathrm { g } ( x ) = 5 x - 4 a$$ where \(a\) is a positive constant.
  1. State the range of f and the range of g .
  2. State why f has no inverse, and find an expression for \(\mathrm { g } ^ { - 1 } ( x )\).
  3. Solve for \(x\) the equation \(\operatorname { gf } ( x ) = 31 a\).
  4. Show that \(\sin 2 \theta ( \tan \theta + \cot \theta ) \equiv 2\).
  5. Hence
    (a) find the exact value of \(\tan \frac { 1 } { 12 } \pi + \tan \frac { 1 } { 8 } \pi + \cot \frac { 1 } { 12 } \pi + \cot \frac { 1 } { 8 } \pi\),
    (b) solve the equation \(\sin 4 \theta ( \tan \theta + \cot \theta ) = 1\) for \(0 < \theta < \frac { 1 } { 2 } \pi\),
    (c) express \(( 1 - \cos 2 \theta ) ^ { 2 } \left( \tan \frac { 1 } { 2 } \theta + \cot \frac { 1 } { 2 } \theta \right) ^ { 3 }\) in terms of \(\sin \theta\).
OCR MEI C3 2009 January Q1
1 Solve the inequality \(| x - 1 | < 3\).
OCR MEI C3 2009 January Q2
2
  1. Differentiate \(x \cos 2 x\) with respect to \(x\).
  2. Integrate \(x \cos 2 x\) with respect to \(x\).
OCR MEI C3 2009 January Q3
3 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
OCR MEI C3 2009 January Q4
4 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 2009 January Q5
5
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
OCR MEI C3 2009 January Q6
6
  1. Disprove the following statement. $$\text { 'If } p > q \text {, then } \frac { 1 } { p } < \frac { 1 } { q } \text {. }$$
  2. State a condition on \(p\) and \(q\) so that the statement is true.
OCR MEI C3 2009 January Q7
7 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\). Section B (36 marks)
OCR MEI C3 2009 January Q8
8 Fig. 8 shows the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\). P is the point on this curve with \(x\)-coordinate 1 , and R is the point \(\left( 0 , - \frac { 7 } { 8 } \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-3_1022_995_479_575} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the gradient of PR.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that PR is a tangent to the curve.
  3. Find the exact coordinates of the turning point Q .
  4. Differentiate \(x \ln x - x\). Hence, or otherwise, show that the area of the region enclosed by the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) is \(\frac { 59 } { 24 } - \frac { 1 } { 4 } \ln 2\).
OCR MEI C3 2009 January Q9
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-4_655_800_431_669} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.
OCR MEI C3 2010 January Q1
1 Solve the equation \(\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } = 0\).
OCR MEI C3 2010 January Q2
2 The temperature \(T\) in degrees Celsius of water in a glass \(t\) minutes after boiling is modelled by the equation \(T = 20 + b \mathrm { e } ^ { - k t }\), where \(b\) and \(k\) are constants. Initially the temperature is \(100 ^ { \circ } \mathrm { C }\), and after 5 minutes the temperature is \(60 ^ { \circ } \mathrm { C }\).
  1. Find \(b\) and \(k\).
  2. Find at what time the temperature reaches \(50 ^ { \circ } \mathrm { C }\).
OCR MEI C3 2010 January Q3
3
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
OCR MEI C3 2010 January Q4
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
OCR MEI C3 2010 January Q5
5 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_455_679_1800_365}

  2. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_374_679_2311_365}
OCR MEI C3 2010 January Q6
6 Write down the conditions for \(\mathrm { f } ( x )\) to be an odd function and for \(\mathrm { g } ( x )\) to be an even function.
Hence prove that, if \(\mathrm { f } ( x )\) is odd and \(\mathrm { g } ( x )\) is even, then the composite function \(\mathrm { gf } ( x )\) is even.
OCR MEI C3 2010 January Q7
7 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).] Section B (36 marks)
OCR MEI C3 2010 January Q8
8 Fig. 8 shows part of the curve \(y = x \cos 3 x\).
The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-3_551_1189_925_479} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.