OCR C3 2016 June — Question 8

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2016
SessionJune
TopicReciprocal Trig & Identities

8 The functions f and g are defined for all real values of \(x\) by $$\mathrm { f } ( x ) = | 2 x + a | + 3 a \quad \text { and } \quad \mathrm { g } ( x ) = 5 x - 4 a$$ where \(a\) is a positive constant.
  1. State the range of f and the range of g .
  2. State why f has no inverse, and find an expression for \(\mathrm { g } ^ { - 1 } ( x )\).
  3. Solve for \(x\) the equation \(\operatorname { gf } ( x ) = 31 a\).
  4. Show that \(\sin 2 \theta ( \tan \theta + \cot \theta ) \equiv 2\).
  5. Hence
    (a) find the exact value of \(\tan \frac { 1 } { 12 } \pi + \tan \frac { 1 } { 8 } \pi + \cot \frac { 1 } { 12 } \pi + \cot \frac { 1 } { 8 } \pi\),
    (b) solve the equation \(\sin 4 \theta ( \tan \theta + \cot \theta ) = 1\) for \(0 < \theta < \frac { 1 } { 2 } \pi\),
    (c) express \(( 1 - \cos 2 \theta ) ^ { 2 } \left( \tan \frac { 1 } { 2 } \theta + \cot \frac { 1 } { 2 } \theta \right) ^ { 3 }\) in terms of \(\sin \theta\).