A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
OCR MEI C3 2010 January — Question 7
Exam Board
OCR MEI
Module
C3 (Core Mathematics 3)
Year
2010
Session
January
Topic
Reciprocal Trig & Identities
7 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).] Section B (36 marks)
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9