Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C2 Q9
5 marks Standard +0.3
9 Showing your method, solve the equation \(2 \sin ^ { 2 } \theta = \cos \theta + 2\) for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 Q10
5 marks Moderate -0.3
10
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). [4]
OCR MEI C2 Q1
3 marks Moderate -0.8
1 Given that \(\sin \theta = \frac { \sqrt { 3 } } { 4 }\), find in surd form the possible values of \(\cos \theta\).
OCR MEI C2 Q2
5 marks Moderate -0.3
2
  1. Show that the equation \(\frac { \tan \theta } { \cos \theta } = 1\) may be rewritten as \(\sin \theta = 1 - \sin ^ { 2 } \theta\).
  2. Hence solve the equation \(\frac { \tan \theta } { \cos \theta } = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q3
5 marks Moderate -0.3
3 Show that the equation \(4 \cos ^ { 2 } \theta = 1 + \sin \theta\) can be expressed as $$4 \sin ^ { 2 } \theta + \sin \theta - 3 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q4
5 marks Standard +0.3
4 Showing your method clearly, solve the equation $$5 \sin ^ { 2 } \theta = 5 + \cos \theta \quad \text { for } 0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ } .$$
OCR MEI C2 Q5
3 marks Moderate -0.8
5 You are given that \(\sin \theta = \frac { \sqrt { 2 } } { 3 }\) and that \(\theta\) is an acute angle. Find the exact value of \(\tan \theta\).
OCR MEI C2 Q6
3 marks Moderate -0.8
6 Solve the equation \(\sin 2 x = - 0.5\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
OCR MEI C2 Q7
3 marks Moderate -0.8
7 You are given that \(\tan \theta = \frac { 1 } { 2 }\) and the angle \(\theta\) is acute. Show, without using a calculator, that \(\cos ^ { 2 } \theta = \frac { 4 } { 5 }\).
OCR MEI C2 Q8
3 marks Moderate -0.8
8 Given that \(\cos \theta = \frac { 1 } { 3 }\) and \(\theta\) is acute, find the exact value of \(\tan \theta\).
OCR MEI C2 Q9
3 marks Easy -1.8
9 Fig. 3 Beginning with the triangle shown in Fig. 3, prove that \(\sin 60 ^ { \circ } = \frac { \sqrt { 3 } } { 2 }\).
OCR MEI C2 Q10
5 marks Moderate -0.8
10
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q12
5 marks Moderate -0.8
12
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Solve the equation \(4 \sin x = 3 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI M1 Q1
5 marks Moderate -0.8
1 Fig. 1 shows four forces acting at a point. The forces are in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-1_399_645_441_754} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Show that \(P = 14\).
Find \(Q\), giving your answer correct to 3 significant figures.
OCR MEI M1 Q2
3 marks Easy -1.2
2 Fig. 1 shows a pile of four uniform blocks in equilibrium on a horizontal table. Their masses, as shown, are \(4 \mathrm {~kg} , 5 \mathrm {~kg} , 7 \mathrm {~kg}\) and 10 kg . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-1_405_573_1560_777} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Mark on the diagram the magnitude and direction of each of the forces acting on the 7 kg block.
OCR MEI M1 Q3
18 marks Standard +0.3
3 Abi and Bob are standing on the ground and are trying to raise a small object of weight 250 N to the top of a building. They are using long light ropes. Fig. 7.1 shows the initial situation. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-2_770_1068_368_530} \captionsetup{labelformat=empty} \caption{Fig. 7.1}
\end{figure} Abi pulls vertically downwards on the rope A with a force \(F\) N. This rope passes over a small smooth pulley and is then connected to the object. Bob pulls on another rope, B, in order to keep the object away from the side of the building. In this situation, the object is stationary and in equilibrium. The tension in rope B, which is horizontal, is 25 N . The pulley is 30 m above the object. The part of rope A between the pulley and the object makes an angle \(\theta\) with the vertical.
  1. Represent the forces acting on the object as a fully labelled triangle of forces.
  2. Find \(F\) and \(\theta\). Show that the distance between the object and the vertical section of rope A is 3 m . Abi then pulls harder and the object moves upwards. Bob adjusts the tension in rope B so that the object moves along a vertical line. Fig. 7.2 shows the situation when the object is part of the way up. The tension in rope A is \(S \mathrm {~N}\) and the tension in rope B is \(T \mathrm {~N}\). The ropes make angles \(\alpha\) and \(\beta\) with the vertical as shown in the diagram. Abi and Bob are taking a rest and holding the object stationary and in equilibrium. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-3_384_357_520_851} \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{figure}
  3. Give the equations, involving \(S , T , \alpha\) and \(\beta\), for equilibrium in the vertical and horizontal directions.
  4. Find the values of \(S\) and \(T\) when \(\alpha = 8.5 ^ { \circ }\) and \(\beta = 35 ^ { \circ }\).
  5. Abi's mass is 40 kg . Explain why it is not possible for her to raise the object to a position in which \(\alpha = 60 ^ { \circ }\).
OCR MEI M1 Q4
5 marks Standard +0.3
4 Fig. 4 illustrates points \(A , B\) and \(C\) on a straight race track. The distance \(A B\) is 300 m and \(A C\) is 500 m .
A car is travelling along the track with uniform acceleration. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-4_70_1329_397_352} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Initially the car is at A and travelling in the direction AB with speed \(5 \mathrm {~ms} ^ { - 1 }\). After 20 s it is at C .
  1. Find the acceleration of the car.
  2. Find the speed of the car at B and how long it takes to travel from A to B .
OCR MEI M1 Q5
3 marks Easy -1.2
5
An egg falls from rest a distance of 75 cm to the floor.
Neglecting air resistance, at what speed does it hit the floor?
OCR MEI M1 Q6
5 marks Moderate -0.8
6 Fig. 1 shows four forces in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-4_364_328_1748_901} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find the value of \(P\).
  2. Hence find the value of \(Q\).
OCR MEI M1 Q7
4 marks Moderate -0.3
7 A block of weight 100 N is on a rough plane that is inclined at \(35 ^ { \circ }\) to the horizontal. The block is in equilibrium with a horizontal force of 40 N acting on it, as shown in Fig. 5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-5_490_880_316_623} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Calculate the frictional force acting on the block.
OCR MEI M1 Q1
6 marks Moderate -0.8
1 Fig. 2 shows two forces acting at A . The figure also shows the perpendicular unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) which are respectively horizontal and vertically upwards. The resultant of the two forces is \(\mathbf { F } \mathbf { N }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{94f23528-931c-47b6-89aa-4b6edd25cc30-1_264_918_584_663} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find \(\mathbf { F }\) in terms of \(\mathbf { i }\) and \(\mathbf { j }\), giving your answer correct to three significant figures.
  2. Calculate the magnitude of \(\mathbf { F }\) and the angle that \(\mathbf { F }\) makes with the upward vertical.
OCR MEI M1 Q2
7 marks Moderate -0.8
2 Force \(\mathbf { F }\) is \(\left( \begin{array} { l } 4 \\ 1 \\ 2 \end{array} \right) \mathrm { N }\) and force \(\mathbf { G }\) is \(\left( \begin{array} { r } - 6 \\ 2 \\ 4 \end{array} \right) \mathrm { N }\).
  1. Find the resultant of \(\mathbf { F }\) and \(\mathbf { G }\) and calculate its magnitude.
  2. Forces \(\mathbf { F }\), \(2 \mathbf { G }\) and \(\mathbf { H }\) act on a particle which is in equilibrium. Find \(\mathbf { H }\).
OCR MEI M1 Q3
7 marks Moderate -0.8
3 A box of mass 5 kg is at rest on a rough horizontal floor.
  1. Find the value of the normal reaction of the floor on the box. The box remains at rest on the floor when a force of 10 N is applied to it at an angle of \(40 ^ { \circ }\) to the upward vertical, as shown in Fig. 3. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{94f23528-931c-47b6-89aa-4b6edd25cc30-2_286_470_1067_803} \captionsetup{labelformat=empty} \caption{Fig. 3}
    \end{figure}
  2. Draw a diagram showing all the forces acting on the box.
  3. Calculate the new value of the normal reaction of the floor on the box and also the frictional force.
OCR MEI M1 Q4
7 marks Moderate -0.8
4 Fig. 4 shows forces of magnitudes 20 N and 16 N inclined at \(60 ^ { \circ }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{94f23528-931c-47b6-89aa-4b6edd25cc30-3_193_351_261_895} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Calculate the component of the resultant of these two forces in the direction of the 20 N force.
  2. Calculate the magnitude of the resultant of these two forces. These are the only forces acting on a particle of mass 2 kg .
  3. Find the magnitude of the acceleration of the particle and the angle the acceleration makes with the 20 N force.
OCR MEI M1 Q5
6 marks Moderate -0.8
5 A particle is in equilibrium when acted on by the forces \(\left( \begin{array} { r } x \\ - 7 \\ z \end{array} \right) , \left( \begin{array} { r } 4 \\ y \\ - 5 \end{array} \right)\) and \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\), where the units are newtons.
  1. Find the values of \(x , y\) and \(z\).
  2. Calculate the magnitude of \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\).