Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C2 2010 June Q1
1 You are given that $$\begin{aligned} u _ { 1 } & = 1
u _ { n + 1 } & = \frac { u _ { n } } { 1 + u _ { n } } \end{aligned}$$ Find the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\). Give your answers as fractions.
OCR MEI C2 2010 June Q2
2
  1. Evaluate \(\sum _ { r = 2 } ^ { 5 } \frac { 1 } { r - 1 }\).
  2. Express the series \(2 \times 3 + 3 \times 4 + 4 \times 5 + 5 \times 6 + 6 \times 7\) in the form \(\sum _ { r = 2 } ^ { a } \mathrm { f } ( r )\) where \(\mathrm { f } ( r )\) and \(a\) are to be determined.
OCR MEI C2 2010 June Q3
3
  1. Differentiate \(x ^ { 3 } - 6 x ^ { 2 } - 15 x + 50\).
  2. Hence find the \(x\)-coordinates of the stationary points on the curve \(y = x ^ { 3 } - 6 x ^ { 2 } - 15 x + 50\).
OCR MEI C2 2010 June Q4
4 In this question, \(\mathrm { f } ( x ) = x ^ { 2 } - 5 x\). Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-2_789_887_1427_628} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} On separate diagrams, sketch the curves \(y = \mathrm { f } ( 2 x )\) and \(y = 3 \mathrm { f } ( x )\), labelling the coordinates of their intersections with the axes and their turning points.
OCR MEI C2 2010 June Q5
5 Find \(\int _ { 2 } ^ { 5 } \left( 1 - \frac { 6 } { x ^ { 3 } } \right) \mathrm { d } x\).
OCR MEI C2 2010 June Q6
6 The gradient of a curve is \(6 x ^ { 2 } + 12 x ^ { \frac { 1 } { 2 } }\). The curve passes through the point \(( 4,10 )\). Find the equation of the curve.
OCR MEI C2 2010 June Q7
7 Express \(\log _ { a } x ^ { 3 } + \log _ { a } \sqrt { x }\) in the form \(k \log _ { a } x\).
OCR MEI C2 2010 June Q8
8 Showing your method clearly, solve the equation \(4 \sin ^ { 2 } \theta = 3 + \cos ^ { 2 } \theta\), for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 2010 June Q9
9 The points \(( 2,6 )\) and \(( 3,18 )\) lie on the curve \(y = a x ^ { n }\).
Use logarithms to find the values of \(a\) and \(n\), giving your answers correct to 2 decimal places.
OCR MEI C2 2010 June Q11
11
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_775_768_260_733} \captionsetup{labelformat=empty} \caption{Fig. 11.1}
    \end{figure} A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of \(045 ^ { \circ }\). R is 9.2 km from P on a bearing of \(113 ^ { \circ }\), so that angle QPR is \(68 ^ { \circ }\). Calculate the distance and bearing of R from Q .
  2. Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_531_1490_1509_363} \captionsetup{labelformat=empty} \caption{Fig. 11.2}
    \end{figure} BC is an arc of a circle with centre A and radius 80 cm . Angle \(\mathrm { CAB } = \frac { 2 \pi } { 3 }\) radians.
    EC is an arc of a circle with centre D and radius \(r \mathrm {~cm}\). Angle CDE is a right angle.
    1. Calculate the area of sector ABC .
    2. Show that \(r = 40 \sqrt { 3 }\) and calculate the area of triangle CDA.
    3. Hence calculate the area of cross-section of the rudder. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-5_881_1378_255_379} \captionsetup{labelformat=empty} \caption{Fig. 12}
      \end{figure} A branching plant has stems, nodes, leaves and buds.
      • There are 7 leaves at each node.
  3. From each node, 2 new stems grow.
  4. At the end of each final stem, there is a bud.
  5. Fig. 12 shows one such plant with 3 stages of nodes. It has 15 stems, 7 nodes, 49 leaves and 8 buds.
    (i) One of these plants has 10 stages of nodes.
    (A) How many buds does it have?
    (B) How many stems does it have?
    (ii) (A) Show that the number of leaves on one of these plants with \(n\) stages of nodes is $$7 \left( 2 ^ { n } - 1 \right) .$$ (B) One of these plants has \(n\) stages of nodes and more than 200000 leaves. Show that \(n\) satisfies the inequality \(n > \frac { \log _ { 10 } 200007 - \log _ { 10 } 7 } { \log _ { 10 } 2 }\). Hence find the least possible value of \(n\).
OCR MEI C4 2006 January Q1
1 Solve the equation \(\frac { 2 x } { x - 2 } - \frac { 4 x } { x + 1 } = 3\).
OCR MEI C4 2006 January Q2
2 A curve is defined parametrically by the equations $$x = t - \ln t , \quad y = t + \ln t \quad ( t > 0 )$$ Find the gradient of the curve at the point where \(t = 2\).
OCR MEI C4 2006 January Q3
3 A triangle ABC has vertices \(\mathrm { A } ( - 2,4,1 ) , \mathrm { B } ( 2,3,4 )\) and \(\mathrm { C } ( 4,8,3 )\). By calculating a suitable scalar product, show that angle ABC is a right angle. Hence calculate the area of the triangle.
OCR MEI C4 2006 January Q4
4 Solve the equation \(2 \sin 2 \theta + \cos 2 \theta = 1\), for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\).
OCR MEI C4 2006 January Q5
5
  1. Find the cartesian equation of the plane through the point ( \(2 , - 1,4\) ) with normal vector $$\mathbf { n } = \left( \begin{array} { r } 1
    - 1
    2 \end{array} \right)$$
  2. Find the coordinates of the point of intersection of this plane and the straight line with equation $$\mathbf { r } = \left( \begin{array} { r } 7
    12
    9 \end{array} \right) + \lambda \left( \begin{array} { l } 1
    3
    2 \end{array} \right)$$
OCR MEI C4 2006 January Q6
6
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 - x ^ { 2 } } }\) for \(| x | < 2\).
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.
OCR MEI C4 2006 January Q7
7 In a game of rugby, a kick is to be taken from a point P (see Fig. 7). P is a perpendicular distance \(y\) metres from the line TOA. Other distances and angles are as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{897205bc-2f93-4628-8f21-2ec7fd3b3699-3_509_629_513_715} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\theta = \beta - \alpha\), and hence that \(\tan \theta = \frac { 6 y } { 160 + y ^ { 2 } }\). Calculate the angle \(\theta\) when \(y = 6\).
  2. By differentiating implicitly, show that \(\frac { \mathrm { d } \theta } { \mathrm { d } y } = \frac { 6 \left( 160 - y ^ { 2 } \right) } { \left( 160 + y ^ { 2 } \right) ^ { 2 } } \cos ^ { 2 } \theta\).
  3. Use this result to find the value of \(y\) that maximises the angle \(\theta\). Calculate this maximum value of \(\theta\). [You need not verify that this value is indeed a maximum.]
OCR MEI C4 2006 January Q8
1 marks
8 Some years ago an island was populated by red squirrels and there were no grey squirrels. Then grey squirrels were introduced. The population \(x\), in thousands, of red squirrels is modelled by the equation $$x = \frac { a } { 1 + k t } ,$$ where \(t\) is the time in years, and \(a\) and \(k\) are constants. When \(t = 0 , x = 2.5\).
  1. Show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - \frac { k x ^ { 2 } } { a }\).
  2. Given that the initial population of 2.5 thousand red squirrels reduces to 1.6 thousand after one year, calculate \(a\) and \(k\).
  3. What is the long-term population of red squirrels predicted by this model? The population \(y\), in thousands, of grey squirrels is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = 2 y - y ^ { 2 } .$$ When \(t = 0 , y = 1\).
  4. Express \(\frac { 1 } { 2 y - y ^ { 2 } }\) in partial fractions.
  5. Hence show by integration that \(\ln \left( \frac { y } { 2 - y } \right) = 2 t\). Show that \(y = \frac { 2 } { 1 + \mathrm { e } ^ { - 2 t } }\).
  6. What is the long-term population of grey squirrels predicted by this model? \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education \section*{MEI STRUCTURED MATHEMATICS} Applications of Advanced Mathematics (C4)
    Paper B: Comprehension
    Monday
    23 JANUARY 2006
    Afternooon U Additional materials:
    Rough paper
    MEI Examination Formulae and Tables (MF2)
    4754(B) \section*{Up to 1 hour
    $$\text { o to } 1 \text { hour }$$} \section*{TIME} \section*{Up to 1 hour}
    • Write your name, centre number and candidate number in the spaces at the top of this page.
    • Answer all the questions.
    • Write your answers in the spaces provided on the question paper.
    • You are permitted to use a graphical calculator in this paper.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • The insert contains the text for use with the questions.
    • You may find it helpful to make notes and do some calculations as you read the passage.
    • You are not required to hand in these notes with your question paper.
    • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
    • The total number of marks for this section is 18.
    For Examiner's Use
    Qu.Mark
    1
    2
    3
    4
    5
    Total
    1 Line 59 says "Again Party G just misses out; if there had been 7 seats G would have got the last one." Where is the evidence for this in the article? 26 parties, P, Q, R, S, T and U take part in an election for 7 seats. Their results are shown in the table below.
    PartyVotes (\%)
    P30.2
    Q11.4
    R22.4
    S14.8
    T10.9
    U10.3
  7. Use the Trial-and-Improvement method, starting with values of \(10 \%\) and \(14 \%\), to find an acceptance percentage for 7 seats, and state the allocation of the seats.
    Acceptance percentage, \(\boldsymbol { a }\) \%10\%14\%
    PartyVotes (\%)SeatsSeatsSeatsSeatsSeats
    P30.2
    Q11.4
    R22.4
    S14.8
    T10.9
    U10.3
    Total seats
    Seat Allocation \(\quad \mathrm { P } \ldots\)... \(\mathrm { Q } \ldots\) R ... S ... T ... \(\mathrm { U } \ldots\).
  8. Now apply the d'Hondt Formula to the same figures to find the allocation of the seats.
    Round
    Party1234567Residual
    P30.2
    Q11.4
    R22.4
    S14.8
    T10.9
    U10.3
    Seat allocated to
    Seat Allocation \(\mathrm { P } \ldots\). Q … \(\mathrm { R } \ldots\). S … T … \(\mathrm { U } \ldots\). 3 In this question, use the figures for the example used in Table 5 in the article, the notation described in the section "Equivalence of the two methods" and the value of 11 found for \(a\) in Table 4. Treating Party E as Party 5, verify that \(\frac { V _ { 5 } } { N _ { 5 } + 1 } < a \leqslant \frac { V _ { 5 } } { N _ { 5 } }\).
    4 Some of the intervals illustrated by the lines in the graph in Fig. 8 are given in this table.
    SeatsIntervalSeatsInterval
    1\(22.2 < a \leqslant 27.0\)5
    2\(16.6 < a \leqslant 22.2\)6\(10.6 < a \leqslant 11.1\)
    37
    4
  9. Describe briefly, giving an example, the relationship between the end-points of these intervals and the values in Table 5, which is reproduced below.
  10. Complete the table above. \begin{table}[h]
    Round
    Party123456Residual
    A22.222.211.111.111.111.17.4
    B6.16.16.16.16.16.16.1
    C27.013.513.513.59.09.09.0
    D16.616.616.68.38.38.38.3
    E11.211.211.211.211.25.65.6
    F3.73.73.73.73.73.73.7
    G10.610.610.610.610.610.610.6
    H2.62.62.62.62.62.62.6
    Seat allocated toCADCEA
    \captionsetup{labelformat=empty} \caption{Table 5}
    \end{table} 5 The ends of the vertical lines in Fig. 8 are marked with circles. Those at the tops of the lines are filled in, e.g. • whereas those at the bottom are not, e.g. o.
  11. Relate this distinction to the use of inequality signs.
  12. Show that the inequality on line 102 can be rearranged to give \(0 \leqslant V _ { k } - N _ { k } a < a\). [1]
  13. Hence justify the use of the inequality signs in line 102.
OCR MEI C4 2006 June Q1
1 Fig. 1 shows part of the graph of \(y = \sin x - \sqrt { 3 } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-2_467_629_468_717} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Express \(\sin x - \sqrt { 3 } \cos x\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 \leqslant \alpha \leqslant \frac { 1 } { 2 } \pi\).
Hence write down the exact coordinates of the turning point P .
OCR MEI C4 2006 June Q2
2
  1. Given that $$\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) } = \frac { A } { 1 + x } + \frac { B } { ( 1 + x ) ^ { 2 } } + \frac { C } { 1 - 4 x } ,$$ where \(A , B\) and \(C\) are constants, find \(B\) and \(C\), and show that \(A = 0\).
  2. Given that \(x\) is sufficiently small, find the first three terms of the binomial expansions of \(( 1 + x ) ^ { - 2 }\) and \(( 1 - 4 x ) ^ { - 1 }\). Hence find the first three terms of the expansion of \(\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) }\).
OCR MEI C4 2006 June Q3
3 Given that \(\sin ( \theta + \alpha ) = 2 \sin \theta\), show that \(\tan \theta = \frac { \sin \alpha } { 2 - \cos \alpha }\). Hence solve the equation \(\sin \left( \theta + 40 ^ { \circ } \right) = 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 2006 June Q4
4
  1. The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating \(x\), the number of bacteria, to the time \(t\).
  2. In another colony, the number of bacteria, \(y\), after time \(t\) minutes is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = \frac { 10000 } { \sqrt { y } } .$$ Find \(y\) in terms of \(t\), given that \(y = 900\) when \(t = 0\). Hence find the number of bacteria after 10 minutes.
OCR MEI C4 2006 June Q5
5
  1. Show that \(\int x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = - \frac { 1 } { 4 } \mathrm { e } ^ { - 2 x } ( 1 + 2 x ) + c\). A vase is made in the shape of the volume of revolution of the curve \(y = x ^ { 1 / 2 } \mathrm { e } ^ { - x }\) about the \(x\)-axis between \(x = 0\) and \(x = 2\) (see Fig. 5). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-3_716_741_1233_662} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  2. Show that this volume of revolution is \(\frac { 1 } { 4 } \pi \left( 1 - \frac { 5 } { \mathrm { e } ^ { 4 } } \right)\). Fig. 6 shows the arch ABCD of a bridge. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-4_378_1630_461_214} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure} The section from B to C is part of the curve OBCE with parametric equations $$x = a ( \theta - \sin \theta ) , y = a ( 1 - \cos \theta ) \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ where \(a\) is a constant.
  3. Find, in terms of \(a\),
    (A) the length of the straight line OE,
    (B) the maximum height of the arch.
  4. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). The straight line sections AB and CD are inclined at \(30 ^ { \circ }\) to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the \(x\)-axis. BF is parallel to the \(y\)-axis.
  5. Show that at the point B the parameter \(\theta\) satisfies the equation $$\sin \theta = \frac { 1 } { \sqrt { 3 } } ( 1 - \cos \theta )$$ Verify that \(\theta = \frac { 2 } { 3 } \pi\) is a solution of this equation.
    Hence show that \(\mathrm { BF } = \frac { 3 } { 2 } a\), and find OF in terms of \(a\), giving your answer exactly.
  6. Find BC and AF in terms of \(a\). Given that the straight line distance AD is 20 metres, calculate the value of \(a\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-5_748_1306_319_367} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure} Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE .
  7. Find the length AE .
  8. Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D.
  9. Verify that the equation of the plane ABC is $$- 3 x + 4 y + 5 z = 30$$ Write down a vector normal to this plane.
  10. Show that the vector \(\left( \begin{array} { l } 4
    3
    5 \end{array} \right)\) is normal to the plane ABDE . Hence find the equation of the plane ABDE .
  11. Find the angle between the planes ABC and ABDE . RECOGNISING ACHIEVEMENT \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education \section*{MEI STRUCTURED MATHEMATICS} Applications of Advanced Mathematics (C4) \section*{Paper B: Comprehension} Monday 12 JUNE 2006 Afternoon Up to 1 hour Additional materials:
    Rough paper
    MEI Examination Formulae and Tables (MF2) TIME Up to 1 hour
    • Write your name, centre number and candidate number in the spaces at the top of this page.
    • Answer all the questions.
    • Write your answers in the spaces provided on the question paper.
    • You are permitted to use a graphical calculator in this paper.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • The insert contains the text for use with the questions.
    • You may find it helpful to make notes and do some calculations as you read the passage.
    • You are not required to hand in these notes with your question paper.
    • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
    • The total number of marks for this paper is 18.
    For Examiner's Use
    Qu.Mark
    1
    2
    3
    4
    5
    6
    Total
    1 The marathon is 26 miles and 385 yards long ( 1 mile is 1760 yards). There are now several men who can run 2 miles in 8 minutes. Imagine that an athlete maintains this average speed for a whole marathon. How long does the athlete take?
    2 According to the linear model, in which calendar year would the record for the men's mile first become negative?
    3 Explain the statement in line 93 "According to this model the 2-hour marathon will never be run."
    4 Explain how the equation in line 49, $$R = L + ( U - L ) \mathrm { e } ^ { - k t } ,$$ is consistent with Fig. 2
  12. initially,
  13. for large values of \(t\).
  14. \(\_\_\_\_\)
    5 A model for an athletics record has the form $$R = A - ( A - B ) \mathrm { e } ^ { - k t } \text { where } A > B > 0 \text { and } k > 0 .$$
  15. Sketch the graph of \(R\) against \(t\), showing \(A\) and \(B\) on your graph.
  16. Name one event for which this might be an appropriate model.

  17. \includegraphics[max width=\textwidth, alt={}, center]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-9_803_808_721_575}
  18. \(\_\_\_\_\)
OCR MEI C4 2006 June Q6
6 A number of cases of the general exponential model for the marathon are given in Table 6. One of these is $$R = 115 + ( 175 - 115 ) \mathrm { e } ^ { - 0.0467 t ^ { 0.797 } }$$
  1. What is the value of \(t\) for the year 2012?
  2. What record time does this model predict for the year 2012?
  3. \(\_\_\_\_\)
  4. \(\_\_\_\_\)
OCR MEI C4 2008 June Q1
1 Express \(\frac { x } { x ^ { 2 } - 4 } + \frac { 2 } { x + 2 }\) as a single fraction, simplifying your answer.