7 In a game of rugby, a kick is to be taken from a point P (see Fig. 7). P is a perpendicular distance \(y\) metres from the line TOA. Other distances and angles are as shown.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{897205bc-2f93-4628-8f21-2ec7fd3b3699-3_509_629_513_715}
\captionsetup{labelformat=empty}
\caption{Fig. 7}
\end{figure}
- Show that \(\theta = \beta - \alpha\), and hence that \(\tan \theta = \frac { 6 y } { 160 + y ^ { 2 } }\).
Calculate the angle \(\theta\) when \(y = 6\).
- By differentiating implicitly, show that \(\frac { \mathrm { d } \theta } { \mathrm { d } y } = \frac { 6 \left( 160 - y ^ { 2 } \right) } { \left( 160 + y ^ { 2 } \right) ^ { 2 } } \cos ^ { 2 } \theta\).
- Use this result to find the value of \(y\) that maximises the angle \(\theta\). Calculate this maximum value of \(\theta\). [You need not verify that this value is indeed a maximum.]