OCR MEI C4 2006 June — Question 4

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2006
SessionJune
TopicDifferential equations

4
  1. The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating \(x\), the number of bacteria, to the time \(t\).
  2. In another colony, the number of bacteria, \(y\), after time \(t\) minutes is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = \frac { 10000 } { \sqrt { y } } .$$ Find \(y\) in terms of \(t\), given that \(y = 900\) when \(t = 0\). Hence find the number of bacteria after 10 minutes.