| Exam Board | OCR MEI |
| Module | C4 (Core Mathematics 4) |
| Year | 2006 |
| Session | June |
| Topic | Addition & Double Angle Formulae |
3 Given that \(\sin ( \theta + \alpha ) = 2 \sin \theta\), show that \(\tan \theta = \frac { \sin \alpha } { 2 - \cos \alpha }\).
Hence solve the equation \(\sin \left( \theta + 40 ^ { \circ } \right) = 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).