9 You are given that \(\mathbf { M } = \left( \begin{array} { l l } 3 & 0
0 & 2 \end{array} \right) , \mathbf { N } = \left( \begin{array} { l l } 0 & 1
1 & 0 \end{array} \right)\) and \(\mathbf { Q } = \left( \begin{array} { r r } 0 & - 1
1 & 0 \end{array} \right)\).
- The matrix products \(\mathbf { Q } ( \mathbf { M N } )\) and \(( \mathbf { Q M } ) \mathbf { N }\) are identical. What property of matrix multiplication does this illustrate?
Find QMN.
\(\mathbf { M } , \mathbf { N }\) and \(\mathbf { Q }\) represent the transformations \(\mathrm { M } , \mathrm { N }\) and Q respectively. - Describe the transformations \(\mathrm { M } , \mathrm { N }\) and Q .
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fa71f270-53cb-44ba-b3a6-3953fa5c4232-4_668_908_788_621}
\captionsetup{labelformat=empty}
\caption{Fig. 9}
\end{figure} - The points \(\mathrm { A } , \mathrm { B }\) and C in the triangle in Fig. 9 are mapped to the points \(\mathrm { A } ^ { \prime } , \mathrm { B } ^ { \prime }\) and \(\mathrm { C } ^ { \prime }\) respectively by the composite transformation N followed by M followed by Q . Draw a diagram showing the image of the triangle after this composite transformation, labelling the image of each point clearly.