| Exam Board | OCR MEI |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
5 Use the result \(\frac { 1 } { 5 r - 1 } - \frac { 1 } { 5 r + 4 } \equiv \frac { 5 } { ( 5 r - 1 ) ( 5 r + 4 ) }\) and the method of differences to find
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 1 ) ( 5 r + 4 ) }$$
simplifying your answer.