| Exam Board | OCR MEI |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
5 Given that \(\frac { 3 } { ( 3 r - 1 ) ( 3 r + 2 ) } \equiv \frac { 1 } { 3 r - 1 } - \frac { 1 } { 3 r + 2 }\), find \(\sum _ { r = 1 } ^ { 20 } \frac { 1 } { ( 3 r - 1 ) ( 3 r + 2 ) }\), giving your answer as an exact fraction.