OCR MEI FP1 2011 June — Question 9

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
TopicMatrices

9 The simultaneous equations $$\begin{aligned} & 2 x - y = 1
& 3 x + k y = b \end{aligned}$$ are represented by the matrix equation \(\mathbf { M } \binom { x } { y } = \binom { 1 } { b }\).
  1. Write down the matrix \(\mathbf { M }\).
  2. State the value of \(k\) for which \(\mathbf { M } ^ { - 1 }\) does not exist and find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\) when \(\mathbf { M } ^ { - 1 }\) exists. Use \(\mathbf { M } ^ { - 1 }\) to solve the simultaneous equations when \(k = 5\) and \(b = 21\).
  3. What can you say about the solutions of the equations when \(k = - \frac { 3 } { 2 }\) ?
  4. The two equations can be interpreted as representing two lines in the \(x - y\) plane. Describe the relationship between these two lines
    (A) when \(k = 5\) and \(b = 21\),
    (B) when \(k = - \frac { 3 } { 2 }\) and \(b = 1\),
    (C) when \(k = - \frac { 3 } { 2 }\) and \(b = \frac { 3 } { 2 }\). RECOGNISING ACHIEVEMENT