Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 2008 January Q1
1 Differentiate \(\sqrt [ 3 ] { 1 + 6 x ^ { 2 } }\).
OCR MEI C3 2008 January Q2
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for all real numbers \(x\) by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = x - 2$$
  1. Find the composite functions \(\mathrm { fg } ( x )\) and \(\mathrm { gf } ( x )\).
  2. Sketch the curves \(y = \mathrm { f } ( x ) , y = \mathrm { fg } ( x )\) and \(y = \mathrm { gf } ( x )\), indicating clearly which is which.
OCR MEI C3 2008 January Q3
3 The profit \(\pounds P\) made by a company in its \(n\)th year is modelled by the exponential function $$P = A \mathrm { e } ^ { b n }$$ In the first year (when \(n = 1\) ), the profit was \(\pounds 10000\). In the second year, the profit was \(\pounds 16000\).
  1. Show that \(\mathrm { e } ^ { b } = 1.6\), and find \(b\) and \(A\).
  2. What does this model predict the profit to be in the 20th year?
OCR MEI C3 2008 January Q4
4 When the gas in a balloon is kept at a constant temperature, the pressure \(P\) in atmospheres and the volume \(V \mathrm {~m} ^ { 3 }\) are related by the equation $$P = \frac { k } { V }$$ where \(k\) is a constant. [This is known as Boyle's Law.]
When the volume is \(100 \mathrm {~m} ^ { 3 }\), the pressure is 5 atmospheres, and the volume is increasing at a rate of \(10 \mathrm {~m} ^ { 3 }\) per second.
  1. Show that \(k = 500\).
  2. Find \(\frac { \mathrm { d } P } { \mathrm {~d} V }\) in terms of \(V\).
  3. Find the rate at which the pressure is decreasing when \(V = 100\).
OCR MEI C3 2008 January Q5
5
  1. Verify the following statement: $$\text { ' } 2 ^ { p } - 1 \text { is a prime number for all prime numbers } p \text { less than } 11 \text { '. }$$
  2. Calculate \(23 \times 89\), and hence disprove this statement: $$\text { ' } 2 ^ { p } - 1 \text { is a prime number for all prime numbers } p ^ { \prime } \text {. }$$
OCR MEI C3 2008 January Q6
6 Fig. 6 shows the curve \(\mathrm { e } ^ { 2 y } = x ^ { 2 } + y\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a66c2da5-46b4-4467-933e-179be04b03b1-3_739_1339_349_404} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x } { 2 \mathrm { e } ^ { 2 y } - 1 }\).
  2. Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient. Section B (36 marks)
OCR MEI C3 2008 January Q7
7 A curve is defined by the equation \(y = 2 x \ln ( 1 + x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence verify that the origin is a stationary point of the curve.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that the origin is a minimum point.
  3. Using the substitution \(u = 1 + x\), show that \(\int \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x = \int \left( u - 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using integration by parts and your answer to part (iii), evaluate \(\int _ { 0 } ^ { 1 } 2 x \ln ( 1 + x ) \mathrm { d } x\).
OCR MEI C3 2008 January Q8
8 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + \sin 2 x\) for \(- \frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 4 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a66c2da5-46b4-4467-933e-179be04b03b1-4_581_816_354_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. State a sequence of two transformations that would map part of the curve \(y = \sin x\) onto the curve \(y = \mathrm { f } ( x )\).
  2. Find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = \frac { 1 } { 4 } \pi\).
  3. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 0,1 )\). Hence write down the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
  4. State the domain of \(\mathrm { f } ^ { - 1 } ( x )\). Add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
  5. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
OCR MEI C3 2005 June Q1
1 Solve the equation \(| 3 x + 2 | = 1\).
OCR MEI C3 2005 June Q2
2 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).
OCR MEI C3 2005 June Q3
3 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for the domain \(x > 0\) as follows: $$\mathrm { f } ( x ) = \ln x , \quad \mathrm {~g} ( x ) = x ^ { 3 } .$$ Express the composite function \(\mathrm { fg } ( x )\) in terms of \(\ln x\).
State the transformation which maps the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { fg } ( x )\).
OCR MEI C3 2005 June Q4
4 The temperature \(T ^ { \circ } \mathrm { C }\) of a liquid at time \(t\) minutes is given by the equation $$T = 30 + 20 \mathrm { e } ^ { - 0.05 t } , \quad \text { for } t \geqslant 0 .$$ Write down the initial temperature of the liquid, and find the initial rate of change of temperature.
Find the time at which the temperature is \(40 ^ { \circ } \mathrm { C }\).
OCR MEI C3 2005 June Q5
5 Using the substitution \(u = 2 x + 1\), show that \(\int _ { 0 } ^ { 1 } \frac { x } { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } ( 2 - \ln 3 )\).
OCR MEI C3 2005 June Q6
6 A curve has equation \(y = \frac { x } { 2 + 3 \ln x }\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence find the exact coordinates of the stationary point of the curve.
OCR MEI C3 2005 June Q7
7 Fig. 7 shows the curve defined implicitly by the equation $$y ^ { 2 } + y = x ^ { 3 } + 2 x ,$$ together with the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3efea8db-9fa1-47a8-89b8-e4888f87a313-3_465_378_534_808} \captionsetup{labelformat=empty} \caption{Not to scale}
\end{figure} Fig. 7 Find the coordinates of the points of intersection of the line and the curve.
Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at each of these two points.
OCR MEI C3 2005 June Q8
8 Fig. 8 shows part of the curve \(y = x \sin 3 x\). It crosses the \(x\)-axis at P . The point on the curve with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\) is Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3efea8db-9fa1-47a8-89b8-e4888f87a313-3_421_789_1748_610} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(x\)-coordinate of P .
  2. Show that Q lies on the line \(y = x\).
  3. Differentiate \(x \sin 3 x\). Hence prove that the line \(y = x\) touches the curve at Q .
  4. Show that the area of the region bounded by the curve and the line \(y = x\) is \(\frac { 1 } { 72 } \left( \pi ^ { 2 } - 8 \right)\).
OCR MEI C3 2005 June Q9
9 The function \(\mathrm { f } ( x ) = \ln \left( 1 + x ^ { 2 } \right)\) has domain \(- 3 \leqslant x \leqslant 3\).
Fig. 9 shows the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3efea8db-9fa1-47a8-89b8-e4888f87a313-4_540_943_477_550} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show algebraically that the function is even. State how this property relates to the shape of the curve.
  2. Find the gradient of the curve at the point \(\mathrm { P } ( 2 , \ln 5 )\).
  3. Explain why the function does not have an inverse for the domain \(- 3 \leqslant x \leqslant 3\). The domain of \(\mathrm { f } ( x )\) is now restricted to \(0 \leqslant x \leqslant 3\). The inverse of \(\mathrm { f } ( x )\) is the function \(\mathrm { g } ( x )\).
  4. Sketch the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) on the same axes. State the domain of the function \(\mathrm { g } ( x )\). Show that \(\mathrm { g } ( x ) = \sqrt { \mathrm { e } ^ { x } - 1 }\).
  5. Differentiate \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( \ln 5 ) = 1 \frac { 1 } { 4 }\). Explain the connection between this result and your answer to part (ii).
OCR MEI C3 2006 January Q1
1 Given that \(y = ( 1 + 6 x ) ^ { \frac { 1 } { 3 } }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { y ^ { 2 } }\).
OCR MEI C3 2006 January Q2
2 A population is \(P\) million at time \(t\) years. \(P\) is modelled by the equation $$P = 5 + a \mathrm { e } ^ { - b t }$$ where \(a\) and \(b\) are constants.
The population is initially 8 million, and declines to 6 million after 1 year.
  1. Use this information to calculate the values of \(a\) and \(b\), giving \(b\) correct to 3 significant figures.
  2. What is the long-term population predicted by the model?
OCR MEI C3 2006 January Q3
3
  1. Express \(2 \ln x + \ln 3\) as a single logarithm.
  2. Hence, given that \(x\) satisfies the equation $$2 \ln x + \ln 3 = \ln ( 5 x + 2 )$$ show that \(x\) is a root of the quadratic equation \(3 x ^ { 2 } - 5 x - 2 = 0\).
  3. Solve this quadratic equation, explaining why only one root is a valid solution of $$2 \ln x + \ln 3 = \ln ( 5 x + 2 ) .$$
OCR MEI C3 2006 January Q4
4 Fig. 4 shows a cone. The angle between the axis and the slant edge is \(30 ^ { \circ }\). Water is poured into the cone at a constant rate of \(2 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the radius of the water surface is \(r \mathrm {~cm}\) and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-3_369_401_431_831} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Write down the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
  2. Show that \(V = \frac { \sqrt { 3 } } { 3 } \pi r ^ { 3 }\), and find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\).
    [0pt] [You may assume that the volume of a cone of height \(h\) and radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  3. Use the results of parts (i) and (ii) to find the value of \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) when \(r = 2\).
OCR MEI C3 2006 January Q5
5 A curve is defined implicitly by the equation $$y ^ { 3 } = 2 x y + x ^ { 2 }$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 ( x + y ) } { 3 y ^ { 2 } - 2 x }\).
  2. Hence write down \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(x\) and \(y\).
OCR MEI C3 2006 January Q6
6 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 + 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arcsin \left( \frac { x - 1 } { 2 } \right)\) and state the domain of this function. Fig. 6 shows a sketch of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-4_506_561_705_751} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Write down the coordinates of the points \(\mathrm { A } , \mathrm { B }\) and C .
OCR MEI C3 2006 January Q7
7 Fig. 7 shows the curve $$y = 2 x - x \ln x , \text { where } x > 0 .$$ The curve crosses the \(x\)-axis at A , and has a turning point at B . The point C on the curve has \(x\)-coordinate 1 . Lines CD and BE are drawn parallel to the \(y\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-5_531_1262_671_536} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the \(x\)-coordinate of A , giving your answer in terms of e .
  2. Find the exact coordinates of B .
  3. Show that the tangents at A and C are perpendicular to each other.
  4. Using integration by parts, show that $$\int x \ln x \mathrm {~d} x = \frac { 1 } { 2 } x ^ { 2 } \ln x - \frac { 1 } { 4 } x ^ { 2 } + c$$ Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines CD and BE . \section*{[Question 8 is printed overleaf.]}
OCR MEI C3 2007 January Q1
1 Fig. 1 shows the graphs of \(y = | x |\) and \(y = | x - 2 | + 1\). The point P is the minimum point of \(y = | x - 2 | + 1\), and Q is the point of intersection of the two graphs. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{666dc19e-f293-4738-8530-fce90df23d17-2_490_844_493_607} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Write down the coordinates of P .
  2. Verify that the \(y\)-coordinate of Q is \(1 \frac { 1 } { 2 }\).