6 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 + 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
- Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arcsin \left( \frac { x - 1 } { 2 } \right)\) and state the domain of this function.
Fig. 6 shows a sketch of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-4_506_561_705_751}
\captionsetup{labelformat=empty}
\caption{Fig. 6}
\end{figure} - Write down the coordinates of the points \(\mathrm { A } , \mathrm { B }\) and C .