4 Fig. 4 shows a cone. The angle between the axis and the slant edge is \(30 ^ { \circ }\). Water is poured into the cone at a constant rate of \(2 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the radius of the water surface is \(r \mathrm {~cm}\) and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-3_369_401_431_831}
\captionsetup{labelformat=empty}
\caption{Fig. 4}
\end{figure}
- Write down the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
- Show that \(V = \frac { \sqrt { 3 } } { 3 } \pi r ^ { 3 }\), and find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\).
[0pt]
[You may assume that the volume of a cone of height \(h\) and radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).] - Use the results of parts (i) and (ii) to find the value of \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) when \(r = 2\).