Edexcel
FP1
2014
January
Q3
4 marks
Standard +0.3
3. A rectangular hyperbola has parametric equations
$$x = 2 t , \quad y = \frac { 2 } { t } , \quad t \neq 0$$
Points \(P\) and \(Q\) on this hyperbola have parameters \(t = \frac { 1 } { 2 }\) and \(t = 4\) respectively.
The line \(L\), which passes through the origin \(O\), is perpendicular to the chord \(P Q\).
Find an equation for \(L\).
Edexcel
FP1
2014
January
Q4
5 marks
Standard +0.3
4.
$$f ( x ) = 2 x ^ { \frac { 1 } { 2 } } - \frac { 6 } { x ^ { 2 } } - 3 , \quad x > 0$$
A root \(\beta\) of the equation \(\mathrm { f } ( x ) = 0\) lies in the interval \([ 3,4 ]\).
Taking 3.5 as a first approximation to \(\beta\), apply the Newton-Raphson process once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\beta\). Give your answer to 3 decimal places.
Edexcel
FP1
2014
January
Q6
9 marks
Standard +0.3
6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = \frac { 1 } { 4 } n ( n + 1 ) ( n - 1 ) ( n + a )$$
where \(a\) is an integer to be determined.
(b) Hence find the value of \(n\), where \(n > 1\), that satisfies
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = 10 \sum _ { r = 1 } ^ { n } r ^ { 2 }$$
Edexcel
FP1
2014
January
Q10
11 marks
Standard +0.3
10. (i) A sequence of numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), is defined by
$$u _ { n + 1 } = 5 u _ { n } + 3 , \quad u _ { 1 } = 3$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = \frac { 3 } { 4 } \left( 5 ^ { n } - 1 \right)$$
(ii) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$f ( n ) = 5 \left( 5 ^ { n } \right) - 4 n - 5 \text { is divisible by } 16 .$$
\includegraphics[max width=\textwidth, alt={}, center]{9093bb1d-4f32-44e7-b0e7-b8c4f8a844e1-32_109_127_2473_1818}
\includegraphics[max width=\textwidth, alt={}, center]{9093bb1d-4f32-44e7-b0e7-b8c4f8a844e1-32_205_1828_2553_122}
Edexcel
FP1
2009
June
Q2
9 marks
Standard +0.8
2. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), show that
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 3 ) = \frac { 1 } { 12 } n ( n + 1 ) ( n + 2 ) ( 3 n + k ) ,$$
where \(k\) is a constant to be found.
(b) Hence evaluate \(\sum _ { r = 21 } ^ { 40 } r ( r + 1 ) ( r + 3 )\).