- The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by
$$z _ { 1 } = 2 - i \quad \text { and } \quad z _ { 2 } = - 8 + 9 i$$
- Show \(z _ { 1 }\) and \(z _ { 2 }\) on a single Argand diagram.
Find, showing your working,
- the value of \(\left| z _ { 1 } \right|\),
- the value of \(\arg z _ { 1 }\), giving your answer in radians to 2 decimal places,
- \(\frac { Z _ { 2 } } { Z _ { 1 } }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real.